Skip to main content

Advertisement

Log in

Oxygen ultra-fine bubbles water administration prevents bone loss of glucocorticoid-induced osteoporosis in mice by suppressing osteoclast differentiation

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Oxygen ultra-fine bubbles (OUB) saline injection prevents bone loss of glucocorti\coid-induced osteoporosis in mice, and OUB inhibit osteoclastogenesis via RANK-TRAF6-c-Fos-NFATc1 signaling and RANK-p38 MAPK signaling in vitro.

Introduction

Ultra-fine bubbles (<200 nm in diameter) have several unique properties, and they are tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUB) on glucocorticoid-induced osteoporosis (GIO) model mice.

Methods

Prednisolone (PSL, 5 mg) was subcutaneously inserted in 6-month-old male C57BL/6J mice, and 200 μl of saline, OUB-diluted saline, or nitrogen ultra-fine bubbles (NUB)-diluted saline was intraperitoneally injected three times per week for 8 weeks the day after operations. Mice were divided into four groups; (1) control, sham-operation + saline; (2) GIO, PSL + saline; (3) GIO + OUB, PSL + OUB saline; (4) GIO + NUB, PSL + NUB saline. The effects of OUB on osteoblasts and osteoclasts were examined by serially diluted OUB medium in vitro.

Results

Bone mass was significantly decreased in GIO [bone volume/total volume (%): control vs. GIO 12.6 vs. 7.9; p < 0.01] while significantly preserved in GIO + OUB (GIO vs. GIO + OUB 7.9 vs. 12.9; p < 0.05). In addition, tartrate-resistant acid phosphatase (TRAP)-positive cells in the distal femur [mean osteoclasts number/bone surface (mm−1)] was significantly increased in GIO (control vs. GIO 6.8 vs. 11.6; p < 0.01) while suppressed in GIO + OUB (GIO vs. GIO + OUB 11.6 vs. 7.5; p < 0.01). NUB did not affect these parameters. In vitro experiments revealed that OUB significantly inhibited osteoclastogenesis by inhibiting RANK-TRAF6-c-Fos-NFATc1 signaling, RANK-p38 MAPK signaling, and TRAP/Cathepsin K/DC-STAMP mRNA expression in a concentration-dependent manner. OUB did not affect osteoblastogenesis in vitro.

Conclusions

OUB prevent bone loss in GIO mice by inhibiting osteoclastogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agarwal A, Ng WJ, Liu Y (2011) Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84:1175–1180

    Article  PubMed  CAS  Google Scholar 

  2. Ebina K, Shi K, Hirao M, Hashimoto J, Kawato Y, Kaneshiro S, Morimoto T, Koizumi K, Yoshikawa H (2013) Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One 8:e65339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Takahashi M, Chiba K, Li P (2007) Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J Phys Chem B 111:1343–1347

    Article  PubMed  CAS  Google Scholar 

  4. Matsuki N, Ichiba S, Ishikawa T, Nagano O, Takeda M, Ujike Y, Yamaguchi T (2012) Blood oxygenation using microbubble suspensions. European biophysics journal: EBJ 41:571–578

    Article  PubMed  CAS  Google Scholar 

  5. Bitterman H (2009) Bench-to-bedside review: oxygen as a drug. Crit Care 13:205

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abdelsalam M, Cheifetz IM (2010) Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: permissive hypoxemia. Respir Care 55:1483–1490

    PubMed  Google Scholar 

  7. Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wang Y, Li X, Zhou Y, Huang P, Xu Y (2010) Preparation of nanobubbles for ultrasound imaging and intracellular drug delivery. Int J Pharm 384:148–153

    Article  PubMed  CAS  Google Scholar 

  9. Hirose Y, Yasui T, Taguchi K et al (2013) Oxygen nano-bubble water reduces calcium oxalate deposits and tubular cell injury in ethylene glycol-treated rat kidney. Urolithiasis 41:279–294

    Article  PubMed  CAS  Google Scholar 

  10. Al Hadi H, Smerdon GR, Fox SW (2013) Hyperbaric oxygen therapy suppresses osteoclast formation and bone resorption. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 31:1839–1844

    Google Scholar 

  11. Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR (2006) Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res 312:1693–1702

    Article  PubMed  CAS  Google Scholar 

  12. Arnett TR (2010) Acidosis, hypoxia and bone. Arch Biochem Biophys 503:103–109

    Article  PubMed  CAS  Google Scholar 

  13. Utting JC, Flanagan AM, Brandao-Burch A, Orriss IR, Arnett TR (2010) Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochem Funct 28:374–380

    Article  PubMed  CAS  Google Scholar 

  14. Harrison JS, Rameshwar P, Chang V, Bandari P (2002) Oxygen saturation in the bone marrow of healthy volunteers. Blood 99:394

    Article  PubMed  CAS  Google Scholar 

  15. Lewis JS, Lee JA, Underwood JC, Harris AL, Lewis CE (1999) Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukoc Biol 66:889–900

    Article  PubMed  CAS  Google Scholar 

  16. Van Staa TP, Laan RF, Barton IP, Cohen S, Reid DM, Cooper C (2003) Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum 48:3224–3229

    Article  PubMed  CAS  Google Scholar 

  17. Rizzoli R, Adachi JD, Cooper C et al (2012) Management of glucocorticoid-induced osteoporosis. Calcif Tissue Int 91:225–243

    Article  PubMed  CAS  Google Scholar 

  18. van Staa TP, Leufkens HG, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 13:777–787

    Article  Google Scholar 

  19. Toth M, Grossman A (2013) Glucocorticoid-induced osteoporosis: lessons from Cushing’s syndrome. Clin Endocrinol 79:1–11

    Article  CAS  Google Scholar 

  20. Mazziotti G, Angeli A, Bilezikian JP, Canalis E, Giustina A (2006) Glucocorticoid-induced osteoporosis: an update. Trends in endocrinology and metabolism: TEM 17:144–149

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki Y, Nawata H, Soen S et al (2014) Guidelines on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research: 2014 update. J Bone Miner Metab 32:337–350

    Article  PubMed  Google Scholar 

  22. Khan AA, Morrison A, Hanley DA et al (2015) Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res Off J Am Soc Bone Miner Res 30:3–23

    Article  Google Scholar 

  23. Yoon HY, Won YY, Chung YS (2012) Poncirin prevents bone loss in glucocorticoid-induced osteoporosis in vivo and in vitro. J Bone Miner Metab 30:509–516

    Article  PubMed  CAS  Google Scholar 

  24. Kawai S, Takagi Y, Kaneko S, Kurosawa T (2011) Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Experimental animals/Japanese Association for Laboratory Animal Science 60:481–487

    Article  CAS  Google Scholar 

  25. Noguchi T, Ebina K, Hirao M et al (2015) Progranulin plays crucial roles in preserving bone mass by inhibiting TNF-alpha-induced osteoclastogenesis and promoting osteoblastic differentiation in mice. Biochem Biophys Res Commun 465:638–643

    Article  PubMed  CAS  Google Scholar 

  26. He Y, Rhodes SD, Chen S et al (2012) C-Fms signaling mediates neurofibromatosis type-1 osteoclast gain-in-functions. PLoS One 7 e46900

  27. Hu M, Bassett JH, Danks L et al (2011) Activated invariant NKT cells regulate osteoclast development and function. J Immunol 186:2910–2917

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt K, Schinke T, Haberland M, Priemel M, Schilling AF, Mueldner C, Rueger JM, Sock E, Wegner M, Amling M (2005) The high mobility group transcription factor Sox8 is a negative regulator of osteoblast differentiation. J Cell Biol 168:899–910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM (2003) Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111:821–831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Imura Y, Yasui H, Outani H et al (2014) Combined targeting of mTOR and c-MET signaling pathways for effective management of epithelioid sarcoma. Mol Cancer 13:185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Peng HH, Martel J, Lee YH, Ojcius DM, Young JD (2011) Serum-derived nanoparticles: de novo generation and growth in vitro, and internalization by mammalian cells in culture. Nanomedicine (Lond) 6:643–658

    Article  CAS  Google Scholar 

  32. Xie X, Lin W, Liu H, Deng J, Chen Y, Liu H, Fu X, Yang Y (2015) Ultrasound-responsive nanobubbles contained with peptide-camptothecin conjugates for targeted drug delivery. Drug delivery 1–9

  33. Huang HY, Liu HL, Hsu PH, Chiang CS, Tsai CH, Chi HS, Chen SY, Chen YY (2015) A multitheragnostic nanobubble system to induce blood-brain barrier disruption with magnetically guided focused ultrasound. Adv Mater 27:655–661

    Article  PubMed  CAS  Google Scholar 

  34. Geis NA, Katus HA, Bekeredjian R (2012) Microbubbles as a vehicle for gene and drug delivery: current clinical implications and future perspectives. Curr Pharm Des 18:2166–2183

    Article  PubMed  CAS  Google Scholar 

  35. Dayton PA, Chomas JE, Lum AF, Allen JS, Lindner JR, Simon SI, Ferrara KW (2001) Optical and acoustical dynamics of microbubble contrast agents inside neutrophils. Biophys J 80:1547–1556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lindner JR, Coggins MP, Kaul S, Klibanov AL, Brandenburger GH, Ley K (2000) Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. Circulation 101:668–675

    Article  PubMed  CAS  Google Scholar 

  37. Chiou WF, Huang YL, Liu YW (2014) (+)-Vitisin a inhibits osteoclast differentiation by preventing TRAF6 ubiquitination and TRAF6-TAK1 formation to suppress NFATc1 activation. PLoS One 9 e89159

  38. Irwin R, LaPres JJ, Kinser S, McCabe LR (2007) Prolyl-hydroxylase inhibition and HIF activation in osteoblasts promotes an adipocytic phenotype. J Cell Biochem 100:762–772

    Article  PubMed  CAS  Google Scholar 

  39. Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghji S (2003) Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 196:2–8

    Article  PubMed  CAS  Google Scholar 

  40. Hamilton JA, Lacey DC, Turner A, de Kok B, Huynh J, Scholz GM (2012) Hypoxia enhances the proliferative response of macrophages to CSF-1 and their pro-survival response to TNF. PLoS One 7:e45853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hsieh CP, Chiou YL, Lin CY (2010) Hyperbaric oxygen-stimulated proliferation and growth of osteoblasts may be mediated through the FGF-2/MEK/ERK 1/2/NF-kappaB and PKC/JNK pathways. Connect Tissue Res 51:497–509

    Article  PubMed  CAS  Google Scholar 

  42. Zahm AM, Bucaro MA, Srinivas V, Shapiro IM, Adams CS (2008) Oxygen tension regulates preosteocyte maturation and mineralization. Bone 43:25–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tuncay OC, Ho D, Barker MK (1994) Oxygen tension regulates osteoblast function. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 105:457–463

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Shinkawa and A. Tada for their excellent technical assistance. We thank all the members of Yoshikawa’s laboratory for the helpful discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ebina.

Ethics declarations

Ethics statement

All experimental protocols were approved by the Ethics Review Committee for Animal Experimentation of Osaka University Graduate School of Medicine (permission number 24-022-007).

Authors’ roles

Study design: TN, KE, MH, and HY. Study conduct: TN and KE. Data collection: TN, KE, MH, TM, KK, KK, HM, and TI. Data analysis: TN and KE. Data interpretation: TN, KE, and MH. Drafting the manuscript: TN and KE. Approving the final version of manuscript: TN, KE, MH, TM, KK, KK, HM, TI, and HY. KE takes responsibility for the integrity of the data analysis.

Funding

All oxygen and nitrogen ultra-fine bubbles-diluted saline and medium were prepared by Ligaric Company Limited. This research was funded by Nakatomi funding, Health and Labor Sciences Research Grant of Japan, Ligaric Company Limited, and West Nippon Expressway Company. The funders had no role in the study design, decision to publish, or preparation of the manuscript.

Conflict of interest

Osaka University and West Nippon Expressway Company are applying for a patent of the medical use of ultra-fine bubbles.

Electronic supplementary material

ESM 1

(PDF 304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noguchi, T., Ebina, K., Hirao, M. et al. Oxygen ultra-fine bubbles water administration prevents bone loss of glucocorticoid-induced osteoporosis in mice by suppressing osteoclast differentiation. Osteoporos Int 28, 1063–1075 (2017). https://doi.org/10.1007/s00198-016-3830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3830-1

Keywords

Navigation