Skip to main content

Advertisement

Log in

Evaluation of three risk assessment tools in discriminating fracture status among Chinese patients undergoing hemodialysis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We evaluated three risk assessment tools, including bone mineral density (BMD) measurement by dual energy X-ray absorptiometry (DXA), osteoporosis self-assessment tool for Asians (OSTA), and fracture risk assessment tool (FRAX), for the prediction of fracture status among Chinese patients undergoing hemodialysis. All of the three assessment tools have a reasonable capability in discriminating fractures.

Introduction

Fractures are common in hemodialysis patients however insufficiently assessed. Our study aimed to assess the ability of three widely used tools [BMD, OSTA, and FRAX] to discriminate fracture status in patients with renal failure undergoing hemodialysis.

Methods

We enrolled 136 hemodialysis patients in a tertiary teaching hospital setting. BMD was measured using DXA at the lumbar spine and the hip region. OSTA was calculated from weight and age. FRAX score was calculated based upon online availability. Discriminative abilities of BMD, OSTA, and FRAX in fracture status were analyzed by receiver operator characteristic (ROC) curves.

Results

There were total 16 fractures (11.76 %) identified in 136 hemodialysis patients. BMD at any site (lumbar spine L1-L4, femoral neck, and total hip) was independently associated with fracture. Areas under the curves (AUC) of BMD (lumbar spine L1-L4, femoral neck, total hip), OSTA, FRAX1 (non-BMD model), and FRAX2 (BMD model) were 0.669 (95 % CI 0.583, 0.747), 0.708 ( 95 % CI 0.624, 0.783), 0.736 (95 % CI 0.654, 0.808), 0.686 (95 % CI 0.601, 0.763), 0.715 (95 % CI 0.631, 0.789), and 0.697 (95 % CI 0.613, 0.773), respectively. The differences of their performance were not significant.

Conclusions

All of the three risk assessment tools had the ability to discriminate fracture status among hemodialysis patients; FRAX BMD model did not improve the discriminative ability of BMD or FRAX non-BMD model alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beaubrun AC, Kilpatrick RD, Freburger JK, Bradbury BD, Wang L, Brookhart MA (2013) Temporal trends in fracture rates and postdischarge outcomes among hemodialysis patients. J Am Soc of Nephrol 24:1461–1469

    Article  Google Scholar 

  2. Alem AM, Sherrard DJ, Gillen DL et al (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58:396–399

    Article  CAS  PubMed  Google Scholar 

  3. Tentori F, McCullough K, Kilpatrick RD et al (2014) High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 85:166–173

    Article  PubMed  Google Scholar 

  4. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the united states, 2005-2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  5. Doan QV, Gleeson M, Kim J, Borker R, Griffiths R, Dubois RW (2007) Economic burden of cardiovascular events and fractures among patients with end-stage renal disease. Curr Med Res Opin 23:1561–1569

    Article  PubMed  Google Scholar 

  6. Piraino B, Chen T, Cooperstein L et al (1988) Fractures and vertebral bone mineral density in patients with renal osteodystrophy. Clin Nephrol 30:57–62

    CAS  PubMed  Google Scholar 

  7. Gerakis A, Hadjidakis D, Kokkinakis E et al (2000) Correlation of bone mineral density with the histological findings of renal osteodystrophy in patients on hemodialysis. J Nephrol 13:437–443

    CAS  PubMed  Google Scholar 

  8. Ersoy FF, Passadakis SP, Tam P et al (2006) Bone mineral density and its correlation with clinical and laboratory factors in chronic peritoneal dialysis patients. J Bone Miner Metab 24:79–86

    Article  PubMed  Google Scholar 

  9. Jamal SA, Chase C, Goh YI et al (2002) Bone density and heel ultrasound testing do not identify patients with dialysis-dependent renal failure who have had fractures. Am J Kidney Dis 39:843–849

    Article  PubMed  Google Scholar 

  10. Negri AL, Barone R, Quiroga MA et al (2004) Bone mineral density: serum markers of bone turnover and their relationships in peritoneal dialysis. Perit Dial Int 24:163–168

    PubMed  Google Scholar 

  11. Nickolas TL, Cremers S, Zhang A et al (2011) Discriminants of prevalent fractures in chronic kidney disease. J Am Soc Nephrol 22:1560–1572

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jamal S, Cheung AM, West S, Lok C (2012) Bone mineral density by dxa and HR-pQCT can discriminate fracture status in men and women with stages 3 to 5 chronic kidney disease. Osteoporos Int 23:2805–2813

    Article  CAS  PubMed  Google Scholar 

  13. Nickolas TL, Stein E, Cohen A et al (2010) Bone mass and microarchitecture in CKD patients with fracture. J Am Soc Nephrol 21:1371–1380

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ambrus C, Almasi C, Berta K et al (2011) Vitamin D insufficiency and bone fractures in patients on maintenance hemodialysis. Int Urol Nephrol 43:475–482

    Article  CAS  PubMed  Google Scholar 

  15. Cejka D, Patsch JM, Weber M et al (2011) Bone microarchitecture in hemodialysis patients assessed by HR-pQCT. Clin J Am Soc Nephrol 6:2264–2271

    Article  PubMed  PubMed Central  Google Scholar 

  16. Iimori S, Mori Y, Akita W et al (2012) Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients—a single-center cohort study. Nephrol Dial Transplant 27:345–351

    Article  CAS  PubMed  Google Scholar 

  17. Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21:543–548

    Article  PubMed  Google Scholar 

  18. Jamal SA, West SL, Nickolas TL (2014) The clinical utility of FRAX to discriminate fracture status in men and women with chronic kidney disease. Osteoporos Int 25:71–76

    Article  CAS  PubMed  Google Scholar 

  19. Kanis JA, Borgstrom F, De Laet C et al (2005) Assessment of fracture risk. Osteoporos Int 16:581–589

    Article  PubMed  Google Scholar 

  20. Genant HK, Jergas M (2003) Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporos Int 14(Suppl 3):S43–55

    Article  PubMed  Google Scholar 

  21. Zhang ZH, Liu ZH, Li N (2014) Expert consensus on the diagnosis of osteoporosis in Chinese population. Chin J Osteoporos 20:1007–1010

    Google Scholar 

  22. Koh LK, Sedrine WB, Torralba TP et al (2001) A simple tool to identify Asian women at increased risk of osteoporosis. Osteoporos Int 12:699–705

    Article  CAS  PubMed  Google Scholar 

  23. CSOBMR (2011) Clinical practice guidelines for diagnosis and management of osteoporosis in China. Chinese Journal of Osteoporosis and Bone Mineral Research 4:2–17

    Google Scholar 

  24. Cosman F, de Beur SJ, LeBoff MS et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. http://www.Sheffield.Ac.Uk/FRAX/.

  26. West SL, Lok CE, Langsetmo L et al (2015) Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res 30:913–919

    Article  PubMed  Google Scholar 

  27. Yenchek RH, Ix JH, Shlipak MG et al (2012) Bone mineral density and fracture risk in older individuals with CKD. Clin J Am Soc Nephrol 7:1130–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zha XY, Hu Y, Pang XN, Chang GL, Li L (2015) Diagnostic value of osteoporosis self-assessment tool for Asians (OSTA) and quantitative bone ultrasound (QUS) in detecting high-risk populations for osteoporosis among elderly chinese men. J Bone Miner Metab 33:230–238

    Article  PubMed  Google Scholar 

  29. Tanaka H, Iwasaki Y, Yamato H et al (2013) p-cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone 56:347–354

    Article  CAS  PubMed  Google Scholar 

  30. Panuccio V, Enia G, Tripepi R et al (2012) Pro-inflammatory cytokines and bone fractures in CKD patients. BMC Nephrol 13:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weinstein RS (2011) Glucocorticoid-induced bone disease. New Engl J Med 365:62–70

    Article  CAS  PubMed  Google Scholar 

  32. Verschueren S, Gielen E, O’Neill TW et al (2013) Sarcopenia and its relationship with bone mineral density in middle-aged and elderly european men. Osteoporos Int 24:87–98

    Article  CAS  PubMed  Google Scholar 

  33. Zuo W, Fei Q, Yang Y (2015) Comparative study of BMD, OSTA and FRAX in the prediction of osteoporotic fracture risk in postmenopausal women. Chin J Osteoporos 21:48–52

    Google Scholar 

  34. Zhu ZS, Zhang ZL (2013) Fracture predictive values of FRAX for low bone mass of postmenopausal women. Chinese Journal of Osteoporosis and Bone Mineral Research 6:213–218

    Google Scholar 

  35. Tuzun S, Eskiyurt N, Akarirmak U et al (2012) The impact of a FRAX-based intervention threshold in Turkey: the FRAX-Turk study. Arch Osteoporos 7:229–235

    Article  PubMed  Google Scholar 

  36. Fuleihan GE, Gundberg CM, Gleason R et al (1994) Racial differences in parathyroid hormone dynamics. J Clin Endocrinol Metab 79:1642–1647

    CAS  PubMed  Google Scholar 

  37. Nesby-O’Dell S, Scanlon KS, Cogswell ME et al (2002) Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third national health and nutrition examination survey, 1988-1994. Am J Clin Nutr 76:187–192

    PubMed  Google Scholar 

  38. Zadshir A, Tareen N, Pan D, Norris K, Martins D (2005) The prevalence of hypovitaminosis D among us adults: data from the NHANES III. Ethn Dis 15:S5-97-101

    PubMed  Google Scholar 

  39. Braun M, Palacios C, Wigertz K et al (2007) Racial differences in skeletal calcium retention in adolescent girls with varied controlled calcium intakes. Am J Clin Nutr 85:1657–1663

    CAS  PubMed  Google Scholar 

  40. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R (1999) Bone mineral acquisition in healthy Asian, Hispanic, Black, and Caucasian youth: a longitudinal study. Journal Clin Endocrinol Metab 84:4702–4712

    CAS  Google Scholar 

  41. Looker AC, Melton LJ, Borrud LG, Shepherd JA (2012) Changes in femur neck bone density in us adults between 1988-1994 and 2005-2008: demographic patterns and possible determinants. Osteoporos Int 23:771–780

    Article  CAS  PubMed  Google Scholar 

  42. Ross PD, Norimatsu H, Davis JW et al (1991) A comparison of hip fracture incidence among native Japanese, Japanese Americans, and American Caucasians. Am J Epidemiol 133:801–809

    CAS  PubMed  Google Scholar 

  43. Lau EM, Lee JK, Suriwongpaisal P et al (2001) The incidence of hip fracture in four Asian countries: the Asian osteoporosis study (AOS). Osteoporos Int 12:239–243

    Article  CAS  PubMed  Google Scholar 

  44. Xu L, Lu A, Zhao X, Chen X, Cummings SR (1996) Very low rates of hip fracture in Beijing, People’s Republic of China the Beijing osteoporosis project. Am J Epidemiol 144:901–907

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Ying.

Ethics declarations

Conflicts of interest

None

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Aj., Ying, Q., Chen, Xn. et al. Evaluation of three risk assessment tools in discriminating fracture status among Chinese patients undergoing hemodialysis. Osteoporos Int 27, 3599–3606 (2016). https://doi.org/10.1007/s00198-016-3690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3690-8

Keywords

Navigation