Skip to main content

Advertisement

Log in

Association of bone turnover markers with volumetric bone loss, periosteal apposition, and fracture risk in older men and women: the AGES-Reykjavik longitudinal study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Association between serum bone formation and resorption markers and cortical and trabecular bone loss and the concurrent periosteal apposition in a population-based cohort of 1069 older adults was assessed. BTM levels moderately reflect the cellular events at the endosteal and periosteal surfaces but are not associated with fracture risk.

Introduction

We assessed whether circulating bone formation and resorption markers (BTM) were individual predictors for trabecular and cortical bone loss, periosteal expansion, and fracture risk in older adults aged 66 to 93 years from the AGES-Reykjavik study.

Methods

The sample for the quantitative computed tomography (QCT)-derived cortical and trabecular BMD and periosteal expansion analysis consisted of 1069 participants (474 men and 595 women) who had complete baseline (2002 to 2006) and follow-up (2007 to 2011) hip QCT scans and serum baseline BTM. During the median follow-up of 11.7 years (range 5.4–12.5), 54 (11.4 %) men and 182 (30.6 %) women sustained at least one fracture of any type.

Results

Increase in BTM levels was associated with faster cortical and trabecular bone loss at the femoral neck and proximal femur in men and women. Higher BTM levels were positively related with periosteal expansion rate at the femoral neck in men. Markers were not associated with fracture risk.

Conclusion

This data corroborates the notion from few previous studies that both envelopes are metabolically active and that BTM levels may moderately reflect the cellular events at the endosteal and periosteal surfaces. However, our results do not support the routine use of BTM to assess fracture risk in older men and women. In light of these findings, further studies are justified to examine whether systemic markers of bone turnover might prove useful in monitoring skeletal remodeling events and the effects of current osteoporosis drugs at the periosteum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Seeman E (2009) Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19(3):219–233

    Article  CAS  PubMed  Google Scholar 

  2. Orwoll ES (2003) Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res Off J Am Soc Bone Miner Res 18(6):949–954. doi:10.1359/jbmr.2003.18.6.949

    Article  Google Scholar 

  3. Chopin F, Biver E, Funck-Brentano T, Bouvard B, Coiffier G, Garnero P, Thomas T (2012) Prognostic interest of bone turnover markers in the management of postmenopausal osteoporosis. Joint Bone Spine 79(1):26–31. doi:10.1016/j.jbspin.2011.05.004

    Article  PubMed  Google Scholar 

  4. Naylor K, Eastell R (2012) Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol 8(7):379–389. doi:10.1038/nrrheum.2012.86

    Article  CAS  PubMed  Google Scholar 

  5. Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA, Group I-IBMSW (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 22 (2):391-420. doi:10.1007/s00198-010-1501-1

  6. Bauer DC, Garnero P, Harrison SL, Cauley JA, Eastell R, Ensrud KE, Orwoll E, Osteoporotic Fractures in Men Research G (2009) Biochemical markers of bone turnover, hip bone loss, and fracture in older men: the MrOS study. J Bone Miner Res Off J Am Soc Bone Miner Res 24(12):2032–2038. doi:10.1359/jbmr.090526

    Article  CAS  Google Scholar 

  7. Garnero P, Sornay-Rendu E, Duboeuf F, Delmas PD (1999) Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY study. J Bone Miner Res Off J Am Soc Bone Miner Res 14(9):1614–1621. doi:10.1359/jbmr.1999.14.9.1614

    Article  CAS  Google Scholar 

  8. Ivaska KK, Lenora J, Gerdhem P, Akesson K, Vaananen HK, Obrant KJ (2008) Serial assessment of serum bone metabolism markers identifies women with the highest rate of bone loss and osteoporosis risk. J Clin Endocrinol Metab 93(7):2622–2632. doi:10.1210/jc.2007-1508

    Article  CAS  PubMed  Google Scholar 

  9. Szulc P, Montella A, Delmas PD (2008) High bone turnover is associated with accelerated bone loss but not with increased fracture risk in men aged 50 and over: the prospective MINOS study. Ann Rheum Dis 67(9):1249–1255. doi:10.1136/ard.2007.077941

    Article  CAS  PubMed  Google Scholar 

  10. Parfitt AM (2002) Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone 30(6):807–809

    Article  CAS  PubMed  Google Scholar 

  11. Kemp JP, Sayers A, Paternoster L, Evans DM, Deere K, St Pourcain B, Timpson NJ, Ring SM, Lorentzon M, Lehtimaki T, Eriksson J, Kahonen M, Raitakari O, Laaksonen M, Sievanen H, Viikari J, Lyytikainen LP, Smith GD, Fraser WD, Vandenput L, Ohlsson C, Tobias JH (2014) Does bone resorption stimulate periosteal expansion? A cross-sectional analysis of beta-C-telopeptides of type I collagen (CTX), genetic markers of the RANKL pathway, and periosteal circumference as measured by pQCT. J Bone Miner Res Off J Am Soc Bone Miner Res 29(4):1015–1024. doi:10.1002/jbmr.2093

    Article  CAS  Google Scholar 

  12. Shigdel R, Osima M, Ahmed LA, Joakimsen RM, Eriksen EF, Zebaze R, Bjornerem A (2015) Bone turnover markers are associated with higher cortical porosity, thinner cortices, and larger size of the proximal femur and non-vertebral fractures. Bone 81:1–6. doi:10.1016/j.bone.2015.06.016

    Article  PubMed  Google Scholar 

  13. Johansson H, Oden A, Kanis JA, McCloskey EV, Morris HA, Cooper C, Vasikaran S, Turnover I-IJWGSBMB (2014) A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int 94(5):560–567. doi:10.1007/s00223-014-9842-y

    Article  CAS  PubMed  Google Scholar 

  14. Luukinen H, Kakonen SM, Pettersson K, Koski K, Laippala P, Lovgren T, Kivela SL, Vaananen HK (2000) Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res Off J Am Soc Bone Miner Res 15(12):2473–2478. doi:10.1359/jbmr.2000.15.12.2473

    Article  CAS  Google Scholar 

  15. Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA (2005) Bone resorption and osteoporotic fractures in elderly men: the dubbo osteoporosis epidemiology study. J Bone Miner Res Off J Am Soc Bone Miner Res 20(4):579–587. doi:10.1359/JBMR.041207

    Article  Google Scholar 

  16. Harris TB, Launer LJ, Eiriksdottir G, Kjartansson O, Jonsson PV, Sigurdsson G, Thorgeirsson G, Aspelund T, Garcia ME, Cotch MF, Hoffman HJ, Gudnason V (2007) Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. Am J Epidemiol 165(9):1076–1087. doi:10.1093/aje/kwk115

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marques EA, Gudnason V, Sigurdsson G, Lang T, Johannesdottir F, Siggeirsdottir K, Launer L, Eiriksdottir G, Harris TB (2015) Are bone turnover markers associated with volumetric bone density, size, and strength in older men and women? The AGES-Reykjavik study. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. doi:10.1007/s00198-015-3442-1

  18. Eysteinsdottir T, Thorsdottir I, Gunnarsdottir I, Steingrimsdottir L (2012) Assessing validity of a short food frequency questionnaire on present dietary intake of elderly Icelanders. Nutr J 11:12. doi:10.1186/1475-2891-11-12

    Article  PubMed  PubMed Central  Google Scholar 

  19. Siggeirsdottir K, Aspelund T, Sigurdsson G, Mogensen B, Chang M, Jonsdottir B, Eiriksdottir G, Launer LJ, Harris TB, Jonsson BY, Gudnason V (2007) Inaccuracy in self-report of fractures may underestimate association with health outcomes when compared with medical record based fracture registry. Eur J Epidemiol 22(9):631–639. doi:10.1007/s10654-007-9163-9

    Article  PubMed  Google Scholar 

  20. Lofman O, Magnusson P, Toss G, Larsson L (2005) Common biochemical markers of bone turnover predict future bone loss: a 5-year follow-up study. Clinica Chimica Acta; Int J Clin Chem 356(1-2):67–75. doi:10.1016/j.cccn.2004.12.014

    Article  Google Scholar 

  21. Ross PD, Knowlton W (1998) Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res Off J Am Soc Bone Miner Res 13(2):297–302. doi:10.1359/jbmr.1998.13.2.297

    Article  CAS  Google Scholar 

  22. Gielen E, O’Neill T, Pye S, Adams J, Ward K, Wu F, Laurent M, Claessens F, Boonen S, Vanderschueren D, Verschueren S (2015) Bone turnover markers predict hip bone loss in elderly European men: results of the European Male Ageing Study (EMAS). Osteoporos Int 26(2):617–627. doi:10.1007/s00198-014-2884-1

    Article  CAS  PubMed  Google Scholar 

  23. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736. doi:10.1016/S0140-6736(10)60320-0

    Article  PubMed  Google Scholar 

  24. Bjornerem A, Ghasem-Zadeh A, Bui M, Wang X, Rantzau C, Nguyen TV, Hopper JL, Zebaze R, Seeman E (2011) Remodeling markers are associated with larger intracortical surface area but smaller trabecular surface area: a twin study. Bone 49(6):1125–1130. doi:10.1016/j.bone.2011.08.009

    Article  PubMed  Google Scholar 

  25. Shahnazari M, Dwyer D, Chu V, Asuncion F, Stolina M, Ominsky M, Kostenuik P, Halloran B (2012) Bone turnover markers in peripheral blood and marrow plasma reflect trabecular bone loss but not endocortical expansion in aging mice. Bone 50(3):628–637. doi:10.1016/j.bone.2011.11.010

    Article  CAS  PubMed  Google Scholar 

  26. Balena R, Shih MS, Parfitt AM (1992) Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women. J Bone Miner Res Off J Am Soc Bone Miner Res 7(12):1475–1482. doi:10.1002/jbmr.5650071216

    Article  CAS  Google Scholar 

  27. Allen MR, Burr DB (2005) Human femoral neck has less cellular periosteum, and more mineralized periosteum, than femoral diaphyseal bone. Bone 36(2):311–316. doi:10.1016/j.bone.2004.10.013

    Article  PubMed  Google Scholar 

  28. Power J, Loveridge N, Rushton N, Parker M, Reeve J (2003) Evidence for bone formation on the external “periosteal” surface of the femoral neck: a comparison of intracapsular hip fracture cases and controls. Osteoporos Int 14(2):141–145. doi:10.1007/s00198-002-1333-8

    Article  CAS  PubMed  Google Scholar 

  29. Szulc P, Garnero P, Marchand F, Duboeuf F, Delmas PD (2005) Biochemical markers of bone formation reflect endosteal bone loss in elderly men--MINOS study. Bone 36(1):13–21. doi:10.1016/j.bone.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  30. Ivaska KK, Gerdhem P, Vaananen HK, Akesson K, Obrant KJ (2010) Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res Off J Am Soc Bone Miner Res 25(2):393–403. doi:10.1359/jbmr.091006

    Article  CAS  Google Scholar 

  31. Melton LJ 3rd, Crowson CS, O’Fallon WM, Wahner HW, Riggs BL (2003) Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res Off J Am Soc Bone Miner Res 18(2):312–318. doi:10.1359/jbmr.2003.18.2.312

    Article  Google Scholar 

  32. Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A, Pettersson K, Vaananen HK, Akesson K, Obrant KJ (2004) Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res Off J Am Soc Bone Miner Res 19(3):386–393. doi:10.1359/JBMR.0301244

    Article  CAS  Google Scholar 

  33. Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey AL, Dall’Ara E, Varga P, Zysset P, Klaushofer K, Roschger P (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49(6):1232–1241. doi:10.1016/j.bone.2011.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qiu S, Rao DS, Palnitkar S, Parfitt AM (2002) Age and distance from the surface but not menopause reduce osteocyte density in human cancellous bone. Bone 31(2):313–318

    Article  CAS  PubMed  Google Scholar 

  35. Donahue SW, Galley SA (2006) Microdamage in bone: implications for fracture, repair, remodeling, and adaptation. Crit Rev Biomed Eng 34(3):215–271

    Article  PubMed  Google Scholar 

  36. Sigurdsson G, Aspelund T, Chang M, Jonsdottir B, Sigurdsson S, Eiriksdottir G, Gudmundsson A, Harris TB, Gudnason V, Lang TF (2006) Increasing sex difference in bone strength in old age: The Age, Gene/Environment Susceptibility-Reykjavik study (AGES-REYKJAVIK). Bone 39(3):644–651. doi:10.1016/j.bone.2006.03.020

    Article  PubMed  Google Scholar 

  37. Johannesdottir F, Aspelund T, Reeve J, Poole KE, Sigurdsson S, Harris TB, Gudnason VG, Sigurdsson G (2013) Similarities and differences between sexes in regional loss of cortical and trabecular bone in the mid-femoral neck: the AGES-Reykjavik longitudinal study. J Bone Miner Res Off J Am Soc Bone Miner Res 28(10):2165–2176. doi:10.1002/jbmr.1960

    Article  Google Scholar 

  38. Seeman E (2003) Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int 14(Suppl 3):S2–8. doi:10.1007/s00198-002-1340-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Institutes of Health contract N01-AG-012100, the National Institute on Aging Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). EAM and TBH were supported in part by and the Intramural Research Program of the National Institutes of Health, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Marques.

Ethics declarations

Conflict of interest

Elisa A Marques, Vilmundur Gudnason, Thomas Lang, Gunnar Sigurdsson, Sigurdur Sigurdsson, Thor Aspelund, Kristin Siggeirsdottir, Lenore Launer, Gudny Eiriksdottir, and Tamara B Harris declare that they have no disclosures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, E.A., Gudnason, V., Lang, T. et al. Association of bone turnover markers with volumetric bone loss, periosteal apposition, and fracture risk in older men and women: the AGES-Reykjavik longitudinal study. Osteoporos Int 27, 3485–3494 (2016). https://doi.org/10.1007/s00198-016-3675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3675-7

Keywords

Navigation