Skip to main content

Advertisement

Log in

Calcitonin alleviates hyperalgesia in osteoporotic rats by modulating serotonin transporter activity

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Calcitonin may relieve pain by modulating central serotonin activity. Calcitonin partly reversed the hypersensitivity to pain induced by ovariectomy. This suggests that the anti-nociceptive effects of calcitonin in the treatment of osteoporosis may be mediated by alterations in neural serotonin transporter (SERT) activity.

Introduction

This study used a rat model of osteoporosis to evaluate the role of the cerebral serotonin system in the anti-nociceptive effect of calcitonin, a drug used to treat post-menopausal osteoporosis.

Methods

Osteoporosis was induced in rats by ovariectomy (OVX). Rats were then randomized to the following four groups: sham operation, OVX, OVX plus calcitonin, or OVX plus alendronate.

Results

OVX led to alterations in bone micro-architecture; alendronate strongly reversed this effect, and calcitonin moderately reversed this effect. OVX increased hyperalgesia (determined as the time for hind paw withdrawal from a heat source); calcitonin reduced this effect, but alendronate had no effect. OVX increased the expression of c-Fos (a neuronal marker of pain) in the thalamus; calcitonin strongly reversed this effect, and alendronate moderately reversed this effect. OVX also reduced SERT but increased 5-HT1A receptor expression and activity; calcitonin aggravated this effect, but alendronate had no effect on recovery of SERT/5-HT1A activity and expression.

Conclusions

Our study of a rat model of osteoporosis suggests that OVX-induced enhancement of the serotonergic system may protect against hyperalgesia. However, the anti-nociceptive effects of calcitonin in osteoporosis may be mediated by decreased neural SERT activity and increased activation of 5-HT1 receptors in the thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Diab DL, Watts NB (2013) Postmenopausal osteoporosis. Curr Opin Endocrinol Diabetes Obes 20:501–509

    Article  CAS  PubMed  Google Scholar 

  2. Tella SH, Gallagher JC (2014) Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol 142:155–170

    Article  CAS  PubMed  Google Scholar 

  3. Karsdal MA, Henriksen K, Arnold M, Christiansen C (2008) Calcitonin: a drug of the past or for the future? Physiologic inhibition of bone resorption while sustaining osteoclast numbers improves bone quality. BioDrugs 22:137–144

    Article  CAS  PubMed  Google Scholar 

  4. Takayama B, Kikuchi S, Konno S, Sekiguchi M (2008) An immunohistochemical study of the antinociceptive effect of calcitonin in ovariectomized rats. BMC Musculoskelet Disord 9:164

    Article  PubMed  PubMed Central  Google Scholar 

  5. Iwamoto J, Makita K, Sato Y, Takeda T, Matsumoto H (2011) Alendronate is more effective than elcatonin in improving pain and quality of life in postmenopausal women with osteoporosis. Osteoporos Int 22:2735–2742

    Article  CAS  PubMed  Google Scholar 

  6. Fujita T, Ohue M, Nakajima M, Fujii Y, Miyauchi A, Takagi Y (2011) Comparison of the effects of elcatonin and risedronate on back and knee pain by electroalgometry using fall of skin impedance and quality of life assessment using SF-36. J Bone Miner Metab 29:588–597

    Article  CAS  PubMed  Google Scholar 

  7. Gennari C (2002) Analgesic effect of calcitonin in osteoporosis. Bone 30:67S–70S

    Article  CAS  PubMed  Google Scholar 

  8. Lyritis GP, Trovas G (2002) Analgesic effects of calcitonin. Bone 30:71S–74S

    Article  CAS  PubMed  Google Scholar 

  9. Knopp-Sihota JA, Newburn-Cook CV, Homik J, Cummings GG, Voaklander D (2012) Calcitonin for treating acute and chronic pain of recent and remote osteoporotic vertebral compression fractures: a systematic review and meta-analysis. Osteoporos Int 23:17–38

    Article  CAS  PubMed  Google Scholar 

  10. Knopp JA, Diner BM, Blitz M, Lyritis GP, Rowe BH (2005) Calcitonin for treating acute pain of osteoporotic vertebral compression fractures: a systematic review of randomized, controlled trials. Osteoporos Int 16:1281–1290

    Article  CAS  PubMed  Google Scholar 

  11. Gobelet C, Meier JL, Schaffner W, Bischof-Delaloye A, Gerster JC, Burckhardt P (1986) Calcitonin and reflex sympathetic dystrophy syndrome. Clin Rheumatol 5:382–388

    Article  CAS  PubMed  Google Scholar 

  12. Hamamci N, Dursun E, Ural C, Cakci A (1996) Calcitonin treatment in reflex sympathetic dystrophy: a preliminary study. Br J Clin Pract 50:373–375

    CAS  PubMed  Google Scholar 

  13. Matayoshi S, Shimodozono M, Hirata Y, Ueda T, Horio S, Kawahira K (2009) Use of calcitonin to prevent complex regional pain syndrome type I in severe hemiplegic patients after stroke. Disabil Rehabil 31:1773–1779

    Article  PubMed  Google Scholar 

  14. Perez RS, Kwakkel G, Zuurmond WW, de Lange JJ (2001) Treatment of reflex sympathetic dystrophy (CRPS type 1): a research synthesis of 21 randomized clinical trials. J Pain Symptom Manag 21:511–526

    Article  CAS  Google Scholar 

  15. Quatraro A, Minei A, De Rosa N, Giugliano D (1992) Calcitonin in painful diabetic neuropathy. Lancet 339:746–747

    Article  CAS  PubMed  Google Scholar 

  16. Visser EJ, Kwei PL (2006) Salmon calcitonin in the treatment of post herpetic neuralgia. Anaesth Intensive Care 34:668–671

    CAS  PubMed  Google Scholar 

  17. Zieleniewski W (1990) Calcitonin nasal spray for painful diabetic neuropathy. Lancet 336:449

    Article  CAS  PubMed  Google Scholar 

  18. Azria M (2002) Possible mechanisms of the analgesic action of calcitonin. Bone 30:80S–83S

    Article  CAS  PubMed  Google Scholar 

  19. Davey RA, Findlay DM (2013) Calcitonin: physiology or fantasy? J Bone Miner Res 28:973–979

    Article  CAS  PubMed  Google Scholar 

  20. Guidobono F, Netti C, Sibilia V, Olgiati VR, Pecile A (1985) Role of catecholamines in calcitonin-induced analgesia. Pharmacology 31:342–348

    Article  CAS  PubMed  Google Scholar 

  21. Maeda Y, Yamada K, Hasegawa T, Nabeshima T (1995) Neuronal mechanism of the inhibitory effect of calcitonin on N-methyl-D-aspartate-induced aversive behavior. Eur J Pharmacol 275:163–170

    Article  CAS  PubMed  Google Scholar 

  22. Meisenberg G, Simmons WH (1983) Minireview. Peptides and the blood–brain barrier. Life Sci 32:2611–23

    Article  CAS  PubMed  Google Scholar 

  23. Pecile A (1992) Calcitonin and relief of pain. Bone Miner 16:187–189

    Article  CAS  PubMed  Google Scholar 

  24. Sibilia VF, Pagani N, Lattuada D, Rapetti F, Guidobono NC (2000) Amylin compared with calcitonin: competitive binding studies in rat brain and antinociceptive activity. Brain Res 854:79–84

    Article  CAS  PubMed  Google Scholar 

  25. Yoshimura M (2000) Analgesic mechanism of calcitonin. J Bone Miner Metab 18:230–233

    Article  CAS  PubMed  Google Scholar 

  26. Viguier F, Michot B, Hamon M, Bourgoin S (2013) Multiple roles of serotonin in pain control mechanisms—implications of 5-HT(7) and other 5-HT receptor types. Eur J Pharmacol 716:8–16

    Article  CAS  PubMed  Google Scholar 

  27. Craft RM (2007) Modulation of pain by estrogens. Pain 132(Suppl 1):S3–12

    Article  CAS  PubMed  Google Scholar 

  28. Martin VT (2009) Ovarian hormones and pain response: a review of clinical and basic science studies. Gend Med 6(Suppl 2):168–192

    Article  PubMed  Google Scholar 

  29. Ito A, Takeda M, Yoshimura T, Komatsu T, Ohno T, Kuriyama H, Matsuda A, Yoshimura M (2012) Anti-hyperalgesic effects of calcitonin on neuropathic pain interacting with its peripheral receptors. Mol Pain 8:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kharode YP, Sharp MC, Bodine PV (2008) Utility of the ovariectomized rat as a model for human osteoporosis in drug discovery. Methods Mol Biol 455:111–124

    Article  CAS  PubMed  Google Scholar 

  31. Zheng XF, Li B, Zhang YH, Yang YH, Meng XY, Jiang SD, Jiang LS (2013) Blockade of substance P receptor attenuates osteoporotic pain, but not bone loss, in ovariectomized mice. Menopause 20:1074–1083

    Article  PubMed  Google Scholar 

  32. Egermann M, Goldhahn J, Schneider E (2005) Animal models for fracture treatment in osteoporosis. Osteoporos Int 16(Suppl 2):S129–138

    Article  PubMed  Google Scholar 

  33. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58:424–430

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuo YJ, Tsuang FY, Sun JS, Lin CH, Chen CH, Li JY, Huang YC, Chen WY, Yeh CB, Shyu JF (2012) Calcitonin inhibits SDCP-induced osteoclast apoptosis and increases its efficacy in a rat model of osteoporosis. PLoS One 7:e40272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guy JA, Shea M, Peter CP, Morrissey R, Hayes WC (1993) Continuous alendronate treatment throughout growth, maturation, and aging in the rat results in increases in bone mass and mechanical properties. Calcif Tissue Int 53:283–8

    Article  CAS  PubMed  Google Scholar 

  36. Coderre TJ, Fundytus ME, McKenna JE, Dalal S, Melzack R (1993) The formalin test: a validation of the weighted-scores method of behavioural pain rating. Pain 54:43–50

    Article  CAS  PubMed  Google Scholar 

  37. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Article  CAS  PubMed  Google Scholar 

  38. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Burlington, MA, USA, p 208

  39. Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Ruegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66

    Article  CAS  PubMed  Google Scholar 

  40. Abate G, Taormina F, Brillante C, Fraccalaglio L (1994) The effects of the carbocalcitonin + arginine-lysine-lactose combination in senile involutional osteoporosis. Minerva Med 85:253–259

    CAS  PubMed  Google Scholar 

  41. Descarries L, Riad M (2012) Effects of the antidepressant fluoxetine on the subcellular localization of 5-HT1A receptors and SERT. Philos Trans R Soc Lond B Biol Sci 367:2416–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hirsch PF, Lester GE, Talmage RV (2001) Calcitonin, an enigmatic hormone: does it have a function? J Musculoskelet Nueronal Interact 1:299–305

    CAS  Google Scholar 

  43. Overman RA, Borse M, Gourlay ML (2013) Salmon calcitonin use and associated cancer risk. Ann Pharmacother 47:1675–1684

    Article  CAS  PubMed  Google Scholar 

  44. Purdue BW, Tilakaratne N, Sexton PM (2002) Molecular pharmacology of the calcitonin receptor. Recept Channels 8:243–255

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partly supported by research grants to J.-F. Shyu from the National Defense Medical Center (MAB-102-56), the Tri-Service General Hospital (TSGH-C102-124), and the Ministry of Science and Technology (MOST 104-2320-B-016-008) of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-F. Shyu.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, CB., Weng, SJ., Chang, KW. et al. Calcitonin alleviates hyperalgesia in osteoporotic rats by modulating serotonin transporter activity. Osteoporos Int 27, 3355–3364 (2016). https://doi.org/10.1007/s00198-016-3652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3652-1

Keywords

Navigation