Skip to main content

Advertisement

Log in

Combination of micellar casein with calcium and vitamins D2 and K2 improves bone status of ovariectomized mice

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Nutritional approaches may help to preserve bone quality. The purpose of our study was to demonstrate the efficiency of an innovative bone health product (BHP) including micellar casein rich in calcium, vitamin D2 and vitamin K2, to improve bone mineral density.

Introduction

The aim of postmenopausal osteoporosis treatment is to decrease bone resorption and/or increase bone formation. Because of the slow bone turnover, osteoporosis prevention and therapies are long-lasting, implying great costs and poor compliance. Even if the effects of nutrition on bone are not as marked as that of pharmaceutical agents, it can be of great help. The purpose of our study was to demonstrate the efficiency of an innovative bone health product (BHP) containing micellar casein rich in calcium, vitamin D2 and vitamin K2, for the improvement of bone mineral density (BMD).

Methods

An ovariectomized mice model was used to study the effect of different concentrations of the ingredient on BMD and microarchitectural parameters. Blood concentrations of C-terminal telopeptide of type I collagen (CTX), N-terminal propeptide of type 1 procollagene (PINP), alkaline phosphatase (ALP), osteocalcin (OC) and RANKL were also measured to evaluate bone remodelling, To evaluate the efficiency of the product to modulate osteoblast and osteoclast growth and differentiation, primary murine bone cells were used.

Results

In vivo studies showed that BMD and microarchitectural parameters were dose-dependently improved after ingestion of the supplement for 3 months. We also report increased osteoblast activity as shown by increased OC activity and decreased osteoclastogenesis as shown by reduced CTX activity. In vitro studies support that BHPs stimulate osteoblast differentiation and mineralization and inhibit osteoclast resorption activity.

Conclusion

Our results show that, when chronically ingested, BHPs improve BMD of ovariectomized mice. This work supports that providing an ingredient including micellar casein rich in calcium, vitamin D2 and vitamin K2 is more efficient than the control diet to maintain bone quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kanis JA, Johnell O, Oden A, Selbo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int 17:1726–1733

    Google Scholar 

  2. Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am 34:1015–1030

    Article  CAS  Google Scholar 

  3. Omi N, Ezawa I (1995) The effect of ovariectomy on bone metabolism in rats. Bone 4(Suppl):163S–168S

    Google Scholar 

  4. Riggs BL, Khosla S (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13(5):763–73

    Article  CAS  PubMed  Google Scholar 

  5. Eastell R, Hannon RA, Garneo P, Campbell MJ, Delmas PED (2007) Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate: review of statistical analysis. J Bone Miner Res 22(11):1656–60

    Article  PubMed  Google Scholar 

  6. Rizzoli R (2008) Nutrition: its role in bone health. Best Pract Res Clin Endocrinol Metab 5:813–29. doi:10.1016/j.beem.2008.08.005

    Article  Google Scholar 

  7. Heaney RP (2009) Dairy and bone health. J Am Coll Nutr Suppl 1:82S–90S

    Article  Google Scholar 

  8. Rouy E, Vico L, Laroche N, Benoit V, Rousseau B, Blachier F, Tomé D, Blais A (2014) Protein quality affects bone status during moderate protein restriction in growing mice. Bone 59:7–13. doi:10.1016/j.bone.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  9. Geusens PP, Boonen S (2002) Osteoporosis and the growth hormone-insulin-like growth factor axis. Horm Res Suppl 3:49–55

    Google Scholar 

  10. Bonjour JP, Chevalley T, Ammann P, Slosman D, Rizzoli R (2001) Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet 9289:1208–12

    Article  Google Scholar 

  11. Rizzoli R, Abraham C, Brandi ML (2014) Nutrition and bone health: turning knowledge and beliefs into healthy behaviour. Curr Med Res Opin 1:131–41. doi:10.1185/03007995.2013.847410

    Article  Google Scholar 

  12. Guralp O, Erel CT (2014) Effects of vitamin K in postmenopausal women: mini review. Maturitas 3:294–299. doi:10.1016/j.maturitas.2013.11.002

    Article  Google Scholar 

  13. Beulens JW, Booth SL, van den Heuvel EG, Stoecklin E, Baka A, Vermeer C (2013) The role of menaquinones (vitamin K2) in human health. Br J Nutr 2013(110):1357–68

    Article  Google Scholar 

  14. Shea MK, Booth SL (2016) Concepts and controversies in evaluating vitamin K status in population-based studies. Nutrients 2:8(1). doi:10.1017/S0007114513001013

    Google Scholar 

  15. Iwamoto J (2014) Vitamin K2 therapy for postmenopausal osteoporosis. Nutrients 6:1971–80. doi:10.3390/nu6051971

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shearer MJ, Vitamin K (1995) Lancet 345:229–34

    Article  CAS  PubMed  Google Scholar 

  17. Kim MS, Kim ES, Sohn CM (2015) Dietary intake of vitamin K in relation to bone mineral density in Korea adults: the Korea National Health and Nutrition Examination Survey (2010-2011). J Clin Biochem Nutr 57:223–7. doi:10.3164/jcbn.14-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kanellakis S, Moschonis G, Tenta R, Schaafsma A, van den Heuvel EG, Papaioannou N, Lyritis G, Manios Y (2012) Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone (vitamin K(1)) or menaquinone-7 (vitamin K (2)): the Postmenopausal Health Study II. Calcif Tissue Int 4:251–62. doi:10.1007/s00223-012-9571

    Article  Google Scholar 

  19. Huang ZB, Wan SL, Lu YJ, Ning L, Liu C, Fan SW (2015) Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporos Int 26:1175–86. doi:10.1007/s00198-014-2989-6

    Article  CAS  PubMed  Google Scholar 

  20. Booth SL, Broe KE, Gagnon DR, Tucker KL, Hannan MT, McLean RR, Dawson-Hughes B, Wilson PW, Cupples LA, Kiel DP (2003) Vitamin K intake and bone mineral density in women and men. Am J Clin Nutr 2:512–6

    Google Scholar 

  21. Fujita Y, Iki M, Tamaki J, Kouda K, Yura A, Kadowaki E, Sato Y, Moon JS, Tomioka K, Okamoto N, Kurumatani N (2012) Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos Int 2:705–14. doi:10.1007/s00198-011-1594-1

    Article  Google Scholar 

  22. Gajic-Veljanoski O, Bayoumi AM, Tomlinson G, Khan K, Cheung AM (2012) Vitamin K supplementation for the primary prevention of osteoporotic fractures: is it cost-effective and is future research warranted? Osteoporos Int 11:2681–92. doi:10.1007/s00198-012-1939-4

    Article  Google Scholar 

  23. Knapen MH, Drummen NE, Smit E, Vermeer C, Theuwissen E (2013) Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos Int 9:2499–507. doi:10.1007/s00198-013-2325-6

    Article  Google Scholar 

  24. Je SH, Joo NS, Choi BH, Kim KM, Kim BT, Park SB, Cho DY, Kim KN, Lee DJ (2011) Vitamin K supplement along with vitamin D and calcium reduced serum concentration of undercarboxylated osteocalcin while increasing bone mineral density in Korean postmenopausal women over sixty-years-old. J Korean Med Sci 8:1093–8. doi:10.3346/jkms.2011.26.8.1093

    Article  Google Scholar 

  25. Gueguen L, Pointillart A (2000) The bioavailability of dietary calcium. J Am Coll Nutr 2(Suppl):119S–136S

    Article  Google Scholar 

  26. Semo E, Kesselman E, Danino D, Livney YD (2007) Casein micelle as a natural nao-capsular vehicle for nutraceuticals. Food Hydrocoll 21:936–942

    Article  CAS  Google Scholar 

  27. Haham M, Ish-Shalom S, Nodelman M, Duek I, Segal E, Kustanovich M, Livney YD (2012) Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct 3:737–44. doi:10.1039/c2fo10249h

    Article  CAS  PubMed  Google Scholar 

  28. Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in the 3D-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  29. Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1:15–23

    Article  PubMed  Google Scholar 

  30. Lespessailles E, Chappard C, Bonnet N, Benhamou CL (2006) Imaging techniques for evaluating bone microarchitecture. Joint Bone Spine 73:254–61

    Article  PubMed  Google Scholar 

  31. Blais A, Malet A, Mikogami T, Martin-Rouas C, Tome D (2009) Oral bovine lactoferrin improves bone status of ovariectomized mice. Am J Physiol Endocrinol Metab 296:E1281–8. doi:10.1152/ajpendo.90938.2008

    Article  CAS  PubMed  Google Scholar 

  32. Scutt A, Reading L, Scutt N, Still K (2003) Mineralizing fibroblast-colony-forming assays. Methods Mol Med 80:29–39

    PubMed  Google Scholar 

  33. Guillerminet F, Beaupied H, Fabien-Soulé V, Tomé D, Benhamou CL, Roux C, Blais A (2010) Hydrolyzed collagen improves bone metabolism and biomechanical parameters in ovariectomized mice: an in vitro and in vivo study. Bone 3:827–34. doi:10.1016/j.bone.2009.10.035

    Article  Google Scholar 

  34. Guo HY, Jiang L, Ibrahim SA, Zhang L, Zhang H, Zhang M, Ren FZ (2009) Orally administered lactoferrin preserves bone mass and microarchitecture in ovariectomized rats. J Nutr 5:958–64. doi:10.3945/jn.108.100586

    Article  Google Scholar 

  35. Nielsen SP (2000) The fallacy of BMD: a critical review of the diagnostic use of dual X-ray absorptiometry. Clin Rheumatol 19:174–83

    Article  CAS  PubMed  Google Scholar 

  36. Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35(Suppl 2):ii27–ii31

    PubMed  Google Scholar 

  37. Ito M, Nishida A, Koga A, Ikeda S, Shiraishi A, Uetani M, Hayashi K, Nakamura T (2002) Contribution of trabecular and cortical components to the mechanical properties of bone and their regulating parameters. Bone 31:351–8

    Article  CAS  PubMed  Google Scholar 

  38. Cooper DM, Thomas CD, Clement JG, Turinsky AL, Sensen CW, Hallgrimsson B (2007) Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone 40:957–65

    Article  PubMed  Google Scholar 

  39. Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11:1356–63

    Article  CAS  PubMed  Google Scholar 

  40. Guillerminet F, Fabien-Soulé V, Even PC, Tomé D, Benhamou CL, Roux C, Blais A (2011) Hydrolyzed collagen improves bone status and prevents bone loss in ovariectomized C3H/HeN mice. Osteoporos Int 23:1909–19. doi:10.1007/s00198-011-1788-6

    Article  PubMed  Google Scholar 

  41. Poon CC, Li RW, Seto SW, Kong SK, Ho HP, Hoi MP, Lee SM, Ngai SM, Chan SW, Leung GP, Kwan YW (2015) In vitro vitamin K(2) and 1α,25-dihydroxyvitamin D(3) combination enhances osteoblasts anabolism of diabetic mice. Eur J Pharmacol 767:30–40. doi:10.1016/j.ejphar.2015.09.048

    Article  CAS  PubMed  Google Scholar 

  42. Wu WJ, Kim MS, Ahn BY (2015) The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption. Food Funct 6:3351–8. doi:10.1039/c5fo00544b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ingredia funded this study. The authors thank Gianni Froidevaux, Stéphanie Dayot and Nicolas Valnaud for their technical assistance; Eric Dolleans for its technical assistance for μCT assessment; and Laure Gosse de Gorre for the coordination of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Blais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulier, A., Schwarz, J., Lespesailles, E. et al. Combination of micellar casein with calcium and vitamins D2 and K2 improves bone status of ovariectomized mice. Osteoporos Int 27, 3103–3112 (2016). https://doi.org/10.1007/s00198-016-3638-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3638-z

Keywords

Navigation