Skip to main content

Advertisement

Log in

Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Room temperature housing (22 °C) results in premature cancellous bone loss in female mice. The bone loss was prevented by housing mice at thermoneutral temperature (32 °C). Thermogenesis differs markedly between mice and humans and mild cold stress induced by standard room temperature housing may introduce an unrecognized confounding variable into preclinical studies.

Introduction

Female mice are often used as preclinical models for osteoporosis but, in contrast to humans, mice exhibit cancellous bone loss during growth. Mice are routinely housed at room temperature (18–23 °C), a strategy that exaggerates physiological differences in thermoregulation between mice (obligatory daily heterotherms) and humans (homeotherms). The purpose of this investigation was to assess whether housing female mice at thermoneutral (temperature range where the basal rate of energy production is at equilibrium with heat loss) alters bone growth, turnover and microarchitecture.

Methods

Growing (4-week-old) female C57BL/6J and C3H/HeJ mice were housed at either 22 or 32 °C for up to 18 weeks.

Results

C57BL/6J mice housed at 22 °C experienced a 62 % cancellous bone loss from the distal femur metaphysis during the interval from 8 to 18 weeks of age and lesser bone loss from the distal femur epiphysis, whereas cancellous and cortical bone mass in 32 °C-housed mice were unchanged or increased. The impact of thermoneutral housing on cancellous bone was not limited to C57BL/6J mice as C3H/HeJ mice exhibited a similar skeletal response. The beneficial effects of thermoneutral housing on cancellous bone were associated with decreased Ucp1 gene expression in brown adipose tissue, increased bone marrow adiposity, higher rates of bone formation, higher expression levels of osteogenic genes and locally decreased bone resorption.

Conclusions

Housing female mice at 22 °C resulted in premature cancellous bone loss. Failure to account for species differences in thermoregulation may seriously confound interpretation of studies utilizing mice as preclinical models for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iwaniec UT, Turner RT (2013) Animal models for osteoporosis. In: Marcus R, Feldman D, Dempster D, Luckey M, Cauley JA (eds) Osteoporosis. Elsevier Academic press, New York, pp 939–961

    Chapter  Google Scholar 

  2. Guglielmi G, De Serio A, Fusilli S, Scillitani A, Chiodini I, Torlontano M, Cammisa M (2000) Age-related changes assessed by peripheral QCT in healthy Italian women. Eur Radiol 10:609–614

    Article  CAS  PubMed  Google Scholar 

  3. Lee EY, Kim D, Kim KM, Kim KJ, Choi HS, Rhee Y, Lim SK (2012) Age-related bone mineral density patterns in Koreans (KNHANES IV). J Clin Endocrinol Metab 97:3310–3318

    Article  CAS  PubMed  Google Scholar 

  4. Glatt V, Canalis E, Stadmeyer L, Bouxsein ML (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Mineral Res: Off J Am Soc Bone Mineral Res 22:1197–1207

    Article  Google Scholar 

  5. Rickard DJ, Iwaniec UT, Evans G et al (2008) Bone growth and turnover in progesterone receptor knockout mice. Endocrinology 149:2383–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frost HM (1999) Changing views about ‘Osteoporoses’ (a 1998 overview). Osteoporos Int: J Established Res Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 10:345–352

    Article  CAS  Google Scholar 

  7. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396

    Article  CAS  PubMed  Google Scholar 

  8. Seeman E (2009) Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:219–233

    Article  CAS  PubMed  Google Scholar 

  9. Turner RT (1994) Cancellous bone turnover in growing rats: time-dependent changes in association between calcein label and osteoblasts. J Bone Miner Res: Off J Am Soc Bone Miner Res 9:1419–1424

    Article  CAS  Google Scholar 

  10. Turner RT, Evans GL, Wakley GK (1993) Mechanism of action of estrogen on cancellous bone balance in tibiae of ovariectomized growing rats: inhibition of indices of formation and resorption. J Bone Miner Res: Off J Am Soc Bone Miner Res 8:359–366

    Article  CAS  Google Scholar 

  11. Westerlind KC, Wronski TJ, Ritman EL, Luo ZP, An KN, Bell NH, Turner RT (1997) Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci U S A 94:4199–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turner RT, Philbrick KA, Wong CP, Olson DA, Branscum AJ, Iwaniec UT (2014) Morbid obesity attenuates the skeletal abnormalities associated with leptin deficiency in mice. J Endocrinol 223:M1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Serrat MA, King D, Lovejoy CO (2008) Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proc Natl Acad Sci U S A 105:19348–19353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwaniec UT, Wronski TJ, Turner RT (2008) Histological analysis of bone. Methods Mol Biol 447:325–341

    Article  PubMed  Google Scholar 

  15. Akhter MP, Iwaniec UT, Covey MA, Cullen DM, Kimmel DB, Recker RR (2000) Genetic variations in bone density, histomorphometry, and strength in mice. Calcif Tissue Int 67:337–344

    Article  CAS  PubMed  Google Scholar 

  16. Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, Iwaniec UT (2013) Peripheral leptin regulates bone formation. J Bone Miner Res: Off J Am Soc Bone Miner Res 28:22–34

    Article  CAS  Google Scholar 

  17. Menagh PJ, Turner RT, Jump DB, Wong CP, Lowry MB, Yakar S, Rosen CJ, Iwaniec UT (2010) Growth hormone regulates the balance between bone formation and bone marrow adiposity. J Bone Miner Res: Off J Am Soc Bone Miner Res 25:757–768

    CAS  Google Scholar 

  18. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res: Off J Am Soc Bone Miner Res 28:2–17

    Article  Google Scholar 

  19. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  20. Team RC (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  21. Turner RT, Iwaniec UT, Andrade JE, Branscum AJ, Neese SL, Olson DA, Wagner L, Wang VC, Schantz SL, Helferich WG (2013) Genistein administered as a once-daily oral supplement had no beneficial effect on the tibia in rat models for postmenopausal bone loss. Menopause (New York, NY) 20:677–686

    Article  Google Scholar 

  22. Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML (2010) Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res: Off J Am Soc Bone Miner Res 25:2078–2088

    Article  Google Scholar 

  23. Turner RT, Iwaniec UT (2011) Low dose parathyroid hormone maintains normal bone formation in adult male rats during rapid weight loss. Bone 48:726–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown RT, Baust JG (1980) Time course of peripheral heterothermy in a homeotherm. Am J Phys 239:R126–129

    CAS  Google Scholar 

  25. Swoap SJ, Gutilla MJ (2009) Cardiovascular changes during daily torpor in the laboratory mouse. Am J Physiol Regul integr Comp Physiol 297:R769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tracy CR (1977) Minimum size of mammalian homeotherms: role of the thermal environment. Science (New York, NY) 198:1034–1035

    Article  CAS  Google Scholar 

  27. Eng JW, Reed CB, Kokolus KM, Pitoniak R, Utley A, Bucsek MJ, Ma WW, Repasky EA, Hylander BL (2015) Housing temperature-induced stress drives therapeutic resistance in murine tumour models through beta2-adrenergic receptor activation. Nat Commun 6:6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kokolus KM, Capitano ML, Lee CT et al (2013) Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc Natl Acad Sci U S A 110:20176–20181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosania K (2014) Chilly mice confound cancer studies. Lab Anim 43:3

    Article  Google Scholar 

  30. Stemmer K, Kotzbeck P, Zani F, Bauer M, Neff C, Muller TD, Pfluger PT, Seeley RJ, Divanovic S (2015) Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int J Obes (2005) 39:791–797

    Article  CAS  Google Scholar 

  31. Bechtold DA, Sidibe A, Saer BR et al (2012) A role for the melatonin-related receptor GPR50 in leptin signaling, adaptive thermogenesis, and torpor. Curr Biol: CB 22:70–77

    Article  CAS  PubMed  Google Scholar 

  32. Gavrilova O, Leon LR, Marcus-Samuels B, Mason MM, Castle AL, Refetoff S, Vinson C, Reitman ML (1999) Torpor in mice is induced by both leptin-dependent and -independent mechanisms. Proc Natl Acad Sci U S A 96:14623–14628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swoap SJ, Weinshenker D (2008) Norepinephrine controls both torpor initiation and emergence via distinct mechanisms in the mouse. PLoS ONE 3, e4038

    Article  PubMed  PubMed Central  Google Scholar 

  34. Swoap SJ, Gutilla MJ, Liles LC, Smith RO, Weinshenker D (2006) The full expression of fasting-induced torpor requires beta 3-adrenergic receptor signaling. J Neurosci: Off J Soc Neurosci 26:241–245

    Article  CAS  Google Scholar 

  35. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Denjean F, Lachuer J, Geloen A, Cohen-Adad F, Moulin C, Barre H, Duchamp C (1999) Differential regulation of uncoupling protein-1, −2 and −3 gene expression by sympathetic innervation in brown adipose tissue of thermoneutral or cold-exposed rats. FEBS Lett 444:181–185

    Article  CAS  PubMed  Google Scholar 

  37. Vosselman MJ, van Marken Lichtenbelt WD, Schrauwen P (2013) Energy dissipation in brown adipose tissue: from mice to men. Mol Cell Endocrinol 379:43–50

    Article  CAS  PubMed  Google Scholar 

  38. Gat-Yablonski G, Phillip M (2008) Leptin and regulation of linear growth. Curr Opin Clin Nutr Metab Care 11:303–308

    Article  CAS  PubMed  Google Scholar 

  39. Hamrick MW, Pennington C, Newton D, Xie D, Isales C (2004) Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34:376–383

    Article  CAS  PubMed  Google Scholar 

  40. Hill EL, Elde R (1991) Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res 264:469–480

    Article  CAS  PubMed  Google Scholar 

  41. Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL (1986) Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science (New York, NY) 232:868–871

    Article  CAS  Google Scholar 

  42. Gordon CJ, Aydin C, Repasky EA, Kokolus KM, Dheyongera G, Johnstone AF (2014) Behaviorally mediated, warm adaptation: a physiological strategy when mice behaviorally thermoregulate. J Therm Biol 44:41–46

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Turner.

Ethics declarations

The experimental protocols were approved by the Institutional Animal Care and Use Committee, and the mice were maintained in accordance with the NIH Guide for the Care and the Use of Laboratory Animals.

Funding

This study received financial support from NIH AR060913, NASA NNX12AL24, and USDA 38420–17804.

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwaniec, U.T., Philbrick, K.A., Wong, C.P. et al. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss. Osteoporos Int 27, 3091–3101 (2016). https://doi.org/10.1007/s00198-016-3634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3634-3

Keywords

Navigation