Skip to main content

Advertisement

Log in

In vivo assessment of bone structure and estimated bone strength by first- and second-generation HR-pQCT

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Bone strength is dependent on bone density and microstructure. High-resolution peripheral quantitative computed tomography (HR-pQCT) can measure microstructure but is somewhat limited due to its resolution. We compared a new HR-pQCT scanner to existing technology and found very good agreement for most parameters. This study will be important when interpreting results from different devices.

Introduction

Recently, a second-generation HR-pQCT scanner (XCT2) has been developed with a higher nominal isotropic resolution (61 μm) compared to the first-generation device (XCT1, 82 μm). It is unclear how in vivo measurements from these two devices compare. In this study, we obtained and analyzed in vivo XCT1 and XCT2 measurements of bone microarchitecture and estimated strength.

Methods

We scanned 51 adults (16 men and 35 women, age 44.8 ± 16.0) on both XCT2 and XCT1 on the same day. We first compared XCT1 and XCT2 measurements obtained using their respective standard patient protocols. In XCT1, microarchitecture parameters were derived, while XCT2 measurements were directly measured. We also compared XCT2-D with XCT1 by finding the overlapping regions of interest and using the standard patient protocol for XCT1.

Results

We obtained excellent agreement between XCT1 and XCT2 for most of the volumetric bone mineral density (vBMD), trabecular and cortical measurements (All R 2 > 0.820) except for cortical porosity at the radius (R 2 = 0.638), trabecular number (R 2 = 0.694, 0.787) and trabecular thickness (R 2 = 0.569, 0.527) at both radius and tibia, respectively. XCT1 and XCT2-D measurements also had excellent agreement for most of the measurements (all R 2 > 0.870) except trabecular number (R 2 = 0.524, 0.706), trabecular thickness (R 2 = 0.758, 0.734) at both radius and tibia, respectively, and trabecular separation (R 2 = 0.656) at the radius.

Conclusion

While some caution should be exercised for parameters that are more dependent on image resolution, results from our study indicate that second-generation scans can be compared to more widely available first-generation data and may be beneficial for multicenter and longitudinal studies using both scanner generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nishiyama KK, Shane E (2013) Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep 11(2):147–155. doi:10.1007/s11914-013-0142-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hansen S, Shanbhogue V, Folkestad L, Nielsen MMF, Brixen K (2014) Bone microarchitecture and estimated strength in 499 adult Danish women and men: a cross-sectional, population-based high-resolution peripheral quantitative computed tomographic study on peak bone structure. Calcif Tissue Int 94(3):269–281

    Article  CAS  PubMed  Google Scholar 

  3. Vico L, Zouch M, Amirouche A, Frère D, Laroche N, Koller B, Laib A, Thomas T, Alexandre C (2008) High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res 23(11):1741–1750. doi:10.1359/jbmr.080704

    Article  PubMed  Google Scholar 

  4. Melton LJ, Riggs BL, van Lenthe GH, Achenbach SJ, Müller R, Bouxsein ML, Amin S, Atkinson EJ, Khosla S (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22(9):1442–1448. doi:10.1359/jbmr.070514

    Article  PubMed  Google Scholar 

  5. MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29(10):1096–1105. doi:10.1016/j.medengphy.2006.11.002

    Article  PubMed  Google Scholar 

  6. Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP, Shane E, Guo XE (2010) High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res 25(4):746–756. doi:10.1359/jbmr.090822

    CAS  PubMed  Google Scholar 

  7. Bacchetta J, Boutroy S, Vilayphiou N, Juillard L, Guebre-Egziabher F, Rognant N, Sornay-Rendu E, Szulc P, Laville M, Delmas PD, Fouque D, Chapurlat R (2009) Early impairment of trabecular microarchitecture assessed with HR-pQCT in patients with stage II-IV chronic kidney disease. J Bone Miner Res 25(4):849–857. doi:10.1359/jbmr.090831

    Google Scholar 

  8. Seeman E, Delmas PD, Hanley DA, Sellmeyer D, Cheung AM, Shane E, Kearns A, Thomas T, Boyd SK, Boutroy S, Bogado C, Majumdar S, Fan M, Libanati C, Zanchetta J (2010) Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res 25(8):1886–1894. doi:10.1002/jbmr.81

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kawalilak C, Johnston J, Olszynski W, Kontulainen S (2014) Characterizing microarchitectural changes at the distal radius and tibia in postmenopausal women using HR-pQCT. Osteoporos Int 25(8):2057–2066

    Article  CAS  PubMed  Google Scholar 

  10. Nishiyama KK, Cohen A, Young P, Wang J, Lappe JM, Guo XE, Dempster DW, Recker RR, Shane E (2014) Teriparatide increases strength of the peripheral skeleton in premenopausal women with idiopathic osteoporosis: a pilot HR-pQCT study. J Clin Endocrinol Metab 99(7):2418–2425. doi:10.1210/jc.2014-1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dalzell N, Kaptoge S, Morris N, Berthier A, Koller B, Braak L, van Rietbergen B, Reeve J (2009) Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int 20(10):1683–1694. doi:10.1007/s00198-008-0833-6

    Article  CAS  PubMed  Google Scholar 

  12. Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD (2008) Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23(3):392–399. doi:10.1359/jbmr.071108

    Article  PubMed  Google Scholar 

  13. Müller R, Rüegsegger P (1995) Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys 17(2):126–133

    Article  PubMed  Google Scholar 

  14. Van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28(1):69–81

    Article  PubMed  Google Scholar 

  15. Krause M, Museyko O, Breer S, Wulff B, Duckstein C, Vettorazzi E, Glueer C, Püschel K, Engelke K, Amling M (2014) Accuracy of trabecular structure by HR-pQCT compared to gold standard μCT in the radius and tibia of patients with osteoporosis and long-term bisphosphonate therapy. Osteoporos Int 25(5):1595–1606

    Article  CAS  PubMed  Google Scholar 

  16. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515. doi:10.1210/jc.2005-1258

    Article  CAS  PubMed  Google Scholar 

  17. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72(4):1396–1409. doi:10.1172/JCI111096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laib A, Ruegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-micrometer-resolution microcomputed tomography. Bone 24(1):35–39

    Article  CAS  PubMed  Google Scholar 

  19. Laib A, Ruegsegger P (1999) Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph 23(2):69–74

    Article  CAS  PubMed  Google Scholar 

  20. Manske SL, Zhu Y, Sandino C, Boyd SK (2015) Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone 79:213–221

    Article  CAS  PubMed  Google Scholar 

  21. Hildebrand T, Rüegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185(1):67–75

    Article  Google Scholar 

  22. Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167–1174

    Article  CAS  PubMed  Google Scholar 

  23. MacNeil JA, Boyd SK (2007) Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography. Bone 41(1):129–137. doi:10.1016/j.bone.2007.02.029

    Article  PubMed  Google Scholar 

  24. Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25(5):983–993. doi:10.1359/jbmr.091104

    PubMed  Google Scholar 

  25. McCalden RW, McGeough JA, Barker MB, Court-Brown CM (1993) Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am 75(8):1193–1205

    CAS  PubMed  Google Scholar 

  26. Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21(2):131–139

    Article  CAS  PubMed  Google Scholar 

  27. Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21(1):13–16

    Article  CAS  PubMed  Google Scholar 

  28. Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31(1):90–95

    Article  CAS  PubMed  Google Scholar 

  29. Ural A, Vashishth D (2007) Effects of intracortical porosity on fracture toughness in aging human bone: a micro-CT-based cohesive finite element study. J Biomech Eng 129(5):625–631

    Article  PubMed  Google Scholar 

  30. Tjong W, Nirody J, Burghardt AJ, Carballido-Gamio J, Kazakia GJ (2014) Structural analysis of cortical porosity applied to HR-pQCT data. Med Phys 41(1):013701

    Article  PubMed  Google Scholar 

  31. Tjong W, Kazakia GJ, Burghardt AJ, Majumdar S (2012) The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure. Med Phys 39(4):1893–1903

    Article  PubMed  PubMed Central  Google Scholar 

  32. Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK (2011) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 26(1):50–62. doi:10.1002/jbmr.171

    Article  PubMed  Google Scholar 

  33. Cohen A, Stein EM, Recker RR, Lappe JM, Dempster DW, Zhou H, Cremers S, McMahon DJ, Nickolas TL, Müller R, Zwahlen A, Young P, Stubby J, Shane E (2013) Teriparatide for idiopathic osteoporosis in premenopausal women: a pilot study. J Clin Endocrinol Metab 98(5):1971–1981. doi:10.1210/jc.2013-1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sode M, Burghardt AJ, Pialat J-B, Link TM, Majumdar S (2011) Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia. Bone 48(6):1291–1297. doi:10.1016/j.bone.2011.03.755

    Article  PubMed  PubMed Central  Google Scholar 

  35. Laib A, Häuselmann HJ, Rüegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337

    CAS  PubMed  Google Scholar 

  36. Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41(4):505–515. doi:10.1016/j.bone.2007.07.007

    Article  PubMed  Google Scholar 

  37. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res 25(4):882–890. doi:10.1359/jbmr.091020

    PubMed  Google Scholar 

  38. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528. doi:10.1016/j.bone.2010.05.034

    Article  PubMed  PubMed Central  Google Scholar 

  39. MacNeil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42(6):1203–1213. doi:10.1016/j.bone.2008.01.017

    Article  PubMed  Google Scholar 

  40. Pistoia W, van Rietbergen B, Lochmüller E-M, Lill CA, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848

    Article  CAS  PubMed  Google Scholar 

  41. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    Article  CAS  PubMed  Google Scholar 

  42. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428

    Article  CAS  PubMed  Google Scholar 

  43. Pialat J, Burghardt A, Sode M, Link T, Majumdar S (2012) Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50(1):111–118

    Article  CAS  PubMed  Google Scholar 

  44. Wachter NJ, Augat P, Krischak GD, Mentzel M, Kinzl L, Claes L (2001) Prediction of cortical bone porosity in vitro by microcomputed tomography. Calcif Tissue Int 68(1):38–42. doi:10.1007/s002230001182

    Article  CAS  PubMed  Google Scholar 

  45. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4(1):3–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all of the participants in this study as well as the technicians who acquired the HR-pQCT scans. We would also like to thank Nicolas Vilayphiou (Scanco Medical) for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Nishiyama.

Ethics declarations

Funding

This research was supported by grants from Thomas L. Kempner and Katheryn C. Patterson Foundation and the Canadian Institutes of Health Research.

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S., Rosete, F., Zhang, C. et al. In vivo assessment of bone structure and estimated bone strength by first- and second-generation HR-pQCT. Osteoporos Int 27, 2955–2966 (2016). https://doi.org/10.1007/s00198-016-3621-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3621-8

Keywords

Navigation