Skip to main content

The effects of weight loss approaches on bone mineral density in adults: a systematic review and meta-analysis of randomized controlled trials

Abstract

Summary

We assessed the impact of weight loss strategies including calorie restriction and exercise training on BMD in adults using a systematic review of randomized controlled trials. Weight reduction results in reduced BMD at the hip, but has less effect on the spine. Both calorie restriction and a combination of calorie restriction and exercise result in a decrease in hip bone density, whereas weight loss response to exercise training without dietary restriction leads to increased hip BMD.

Introduction

Findings are not consistent on the effect of weight loss on bone mineral density (BMD). We conducted a systematic review on the randomized controlled trials to assess the effect of weight loss strategies, including calorie restriction and exercise programs on BMD in adults.

Methods

A structured and comprehensive search of MEDLINE and EMBASE databases was undertaken up to March 2016. Study-specific mean differences (MD) were pooled using a random-effects model. Subgroup analysis and meta-regression were used to find possible sources of between-study heterogeneity.

Results

Thirty-two randomized controlled trials met predetermined inclusion criteria. The meta-analysis revealed no significant difference on total BMD (MD 0.007, 95 % CI −0.020–0.034, p = 0.608). In contrast, the pooled data of studies showed a significant effect of weight loss on hip BMD (MD −0.008, 95 % CI −0.09 to −0.006 g/cm2, p < 0.001) and also lumbar spine BMD (MD −0.018 g/cm2, 95 % CI −0.019 to −0.017, p < 0.001). BMD in the hip site decreased after more than 4 months, especially in those who were obese. Moreover, calorie restriction interventions longer than 13 months showed a significant decreased in lumbar spine BMD.

Conclusion

Weight loss led to significant decreases at the hip and lumbar spine BMD but not at the total. Weight loss response following calorie restriction resulted in a decrease in hip and lumbar spine bone density especially more than 1 year; whereas an exercise-induced weight loss did not.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Gower BA, Ard JD, Hunter GR, Fernandez J, Ovalle F (2007) Elements of the metabolic syndrome: association with insulin sensitivity and effects of ethnicity. Metab Syndr Relat Disord 5(1):77–86

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Williams MJ, Hunter GR, Kekes-Szabo T, Snyder S, Treuth MS (1997) Regional fat distribution in women and risk of cardiovascular disease. Am J Clin Nutr 65(3):855–860

    CAS  PubMed  Google Scholar 

  3. 3.

    Hunter G, Giger JN, Weaver M, Strickland O, Zuckerman P, Taylor H (2000) Fat distribution and cardiovascular disease risk in African-American women. J Natl Black Nurses Assoc 11(2):7–11

    CAS  PubMed  Google Scholar 

  4. 4.

    Philipson T (2001) The world-wide growth in obesity: an economic research agenda. Health Econ 10(1):1–7

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Edelstein SL, Barrett-Connor E (1993) Relation between body size and bone mineral density in elderly men and women. Am J Epidemiol 138(3):160–169

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Metab Res 8(5):567–573

    CAS  Article  Google Scholar 

  7. 7.

    Sukumar D, Schlussel Y, Riedt C, Gordon C, Stahl T, Shapses S (2011) Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int 22(2):635–645

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Tanaka S, Kuroda T, Saito M, Shiraki M (2013) Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos Int 24(1):69–76

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Shapses S, Cifuentes M (2003) Weight reduction and bone health. In: Lanham-New SA, Jean-Phillippe B (eds) Nutritional aspects of bone health. Thomas Graham House, Royal Society of Chemistry, Science Park, pp 589–604

    Google Scholar 

  10. 10.

    Sukumar D, Ambia‐Sobhan H, Zurfluh R, Schlussel Y, Stahl TJ, Gordon CL, Shapses SA (2011) Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. J Bone Miner Metab Res 26(6):1339–1348

    CAS  Article  Google Scholar 

  11. 11.

    Jürimäe J, Kums T, Jürimäe T (2009) Adipocytokine and ghrelin levels in relation to bone mineral density in physically active older women: longitudinal associations. Eur J Endocrinol 160(3):381–385

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, Syversen U, Reseland JE (2004) Adiponectin and its receptors are expressed in bone-forming cells. Bone 35(4):842–849

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Silva HG, Mendonça L, Conceição FL, Zahar SE, Farias MLF (2007) Influence of obesity on bone density in postmenopausal women. Arq Bras Endocrinol Metabol 51(6):943–949

    PubMed  Article  Google Scholar 

  14. 14.

    Jensen LB, Quaade F, Sørensen OH (1994) Bone loss accompanying voluntary weight loss in obese humans. J Bone Miner Metab Res 9(4):459–463

    CAS  Article  Google Scholar 

  15. 15.

    Jensen LB, Kollerup G, Quaade F, SøRensen OH (2001) Bone mineral changes in obese women during a moderate weight loss with and without calcium supplementation. J Bone Miner Metab Res 16(1):141–147

    CAS  Article  Google Scholar 

  16. 16.

    Zibellini J, Seimon RV, Lee CM, Gibson AA, Hsu MS, Shapses SA, Nguyen T, Sainsbury A (2015) Does diet‐induced weight loss lead to bone loss in overweight or obese adults? A systematic review and meta‐analysis of clinical trials. J Bone Miner Metab Res 30(12):2168–2178

    CAS  Article  Google Scholar 

  17. 17.

    Richardson WS, Wilson MC, Nishikawa J, Hayward RS (1995) The well-built clinical question: a key to evidence-based decisions. ACP J Club 123(3):A12–A13

    CAS  PubMed  Google Scholar 

  18. 18.

    Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341

    PubMed  Article  Google Scholar 

  19. 19.

    Dawson-Hughes B, Tosteson A, Melton L III, National Osteoporosis Foundation Guide Committee et al (2008) Implications of absolute fracture risk assessment for osteoporosis practice guidelines in the USA. Osteoporos Int 9(4494158):6–14

    Google Scholar 

  20. 20.

    Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Egger M, Davey-Smith G, Altman D (2008) Systematic reviews in health care: meta-analysis in context. Wiley, Hoboken, NJ

  22. 22.

    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Hinton PS, Scott Rector R, Donnelly JE, Smith BK, Bailey B (2010) Total body bone mineral content and density during weight loss and maintenance on a low- or recommended-dairy weight-maintenance diet in obese men and women. Eur J Clin Nutr 64(4):392–399

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Movassagbehestani M (2012) Effects of a 12-week aerobic exercise on back spine and thigh bone mineral density in heavy women after menopause. Biosci Biotechnol Res Asia 9(1):149–156

    Article  Google Scholar 

  25. 25.

    Antonio J, Sanders MS, Ehler LA, Uelmen J, Raether JB, Stout JR (2000) Effects of exercise training and amino-acid supplementation on body composition and physical performance in untrained women. Nutrition 16(11–12):1043–1046

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Thorpe MP, Jacobson EH, Layman DK, He X, Kris-Etherton PM, Evans EM (2008) A diet high in protein, dairy, and calcium attenuates bone loss over twelve months of weight loss and maintenance relative to a conventional high-carbohydrate diet in adults. J Nutr 138(6):1096–1100

    CAS  PubMed  Google Scholar 

  27. 27.

    Bowen J, Noakes M, Clifton PM (2004) A high dairy protein, high-calcium diet minimizes bone turnover in overweight adults during weight loss. J Nutr 134(3):568–573

    CAS  PubMed  Google Scholar 

  28. 28.

    Soomro RR, Ahmed SI, Khan M, Ali SS (2015) Comparing the effects of osteoporosis prevention exercise protocol (OPEP) versus walking in the prevention of osteoporosis in younger females. Pak J Med Sci 31(2):336–340

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tirosh A, De Souza RJ, Sacks F, Bray GA, Smith SR, LeBoff MS (2015) Sex differences in the effects of weight loss diets on bone mineral density and body composition: POUNDS LOST trial. J Clin Endocrinol Metab 100(6):2463–2471

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Von Stengel S, Bebenek M, Engelke K, Kemmler W (2015) Whole-body electromyostimulation to fight osteopenia in elderly females: the randomized controlled training and electrostimulation trial (TEST-III). J Osteoporos

  31. 31.

    Christensen P, Frederiksen R, Bliddal H, Riecke BF, Bartels EM, Henriksen M, Juul SRT, Gudbergsen H, Winther K, Astrup A, Christensen R (2013) Comparison of three weight maintenance programs on cardiovascular risk, bone and vitamins in sedentary older adults. Obesity (Silver Spring) 21(10):1982–1990

    CAS  Article  Google Scholar 

  32. 32.

    Jesudason D, Nordin BEC, Keogh J, Clifton P (2013) Comparison of 2 weight-loss diets of different protein content on bone health: a randomized trial. Am J Clin Nutr 98(5):1343–1352

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Foster GD, Wyatt HR, Hill JO, Makris AP, Rosenbaum DL, Brill C, Stein RI, Mohammed BS, Miller B, Rader DJ (2010) Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann Intern Med 153(3):147–157

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Noakes M, Keogh JB, Foster PR, Clifton PM (2005) Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am J Clin Nutr 81:1298–1306

    CAS  PubMed  Google Scholar 

  35. 35.

    Cohen TR, Hazell TJ, Vanstone CA, Plourde H, Rodd CJ, Weiler HA (2013) A family-centered lifestyle intervention to improve body composition and bone mass in overweight and obese children 6 through 8 years: a randomized controlled trial study protocol. BMC Public Health 13(1):383–398

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Colleran HL, Wideman L, Lovelady CA (2012) Effects of energy restriction and exercise on bone mineral density during lactation. Med Sci Sports Exerc 44(8):1570–1579

    PubMed  Article  Google Scholar 

  37. 37.

    DeBar LL, Ritenbaugh C, Vuckovic N, Stevens VJ, Aickin M, Elliot D, Moe E, Orwoll E, Ernst D, Irving LM (2004) YOUTH: decisions and challenges in designing an osteoporosis prevention intervention for teen girls. Prev Med 39(5):1047–1055

    PubMed  Article  Google Scholar 

  38. 38.

    Nakagi Y, Ito T, Hirooka K, Sugioka Y, Endo H, Saijo Y, Imai H, Takeda H, Kayama F, Sasaki S, Yoshida T (2010) Association between lifestyle habits and bone mineral density in Japanese juveniles. Environ Health Prev Med 15(4):222–228

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Pieltain C, De Curtis M, Gérard P, Rigo J (2001) Weight gain composition in preterm infants with dual energy x-ray absorptiometry. Pediatr Res 49(1):120–124

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Santos LC, Cintra IP, Fisberg M, Martini LA (2009) Effects of weight change on bone mass and metabolic parameters in obese adolescents. E Spen 4(1):e47–e52

    Article  Google Scholar 

  41. 41.

    Wang Q, Alen M, Nicholson P, Suominen H, Koistinen A, Kroger H, Cheng S (2007) Weight-bearing, muscle loading and bone mineral accrual in pubertal girls—a 2-year longitudinal study. Bone 40(5):1196–1202

    PubMed  Article  Google Scholar 

  42. 42.

    Armamento-Villareal R, Sadler C, Napoli N, Shah K, Chode S, Sinacore DR, Qualls C, Villareal DT (2012) Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J Bone Miner Metab Res 27(5):1215–1221

    CAS  Article  Google Scholar 

  43. 43.

    Shah K, Armamento-Villareal R, Parimi N, Chode S, Sinacore DR, Hilton TN, Napoli N, Qualls C, Villareal DT (2011) Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J Bone Miner Res 26(12):2851–2859

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Waters DL, Vawter R, Qualls C, Chode S, Armamento-Villareal R, Villareal DT (2013) Long-term maintenance of weight loss after lifestyle intervention in frail, obese older adults. J Nutr Health Aging 17(1):3–7

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Armamento-Villareal R, Aguirre L, Napoli N, Shah K, Hilton T, Sinacore DR, Qualls C, Villareal DT (2014) Changes in thigh muscle volume predict bone mineral density response to lifestyle therapy in frail, obese older adults. Osteoporos Int 25(2):551–558

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Lipkin EW, Schwartz AV, Anderson AM, Davis C, Johnson KC, Gregg EW, Bray GA, Berkowitz R, Peters AL, Hodges A, Lewis C, Kahn SE (2014) The look AHEAD Trial: bone loss at 4-year follow-up in type 2 diabetes. Diabetes Care 37(10):2822–2829

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Silverman NE, Nicklas BJ, Ryan AS (2009) Addition of aerobic exercise to a weight loss program increases BMD, with an associated reduction in inflammation in overweight postmenopausal women. Calcif Tissue Int 84(4):257–265

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC, Birge SJ Jr (1988) Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 108(6):824–828

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Shea KL, Gozansky WS, Sherk VD, Swibas TA, Wolfe P, Scherzinger A, Stamm E, Kohrt WM (2014) Loss of bone strength in response to exercise-induced weight loss in obese postmenopausal women: results from a pilot study. J Musculoskelet Neuronal Interact 14(2):229–238

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ryan AS, Nicklas BJ, Dennis KE (1998) Aerobic exercise maintains regional bone mineral density during weight loss in postmenopausal women. J Appl Physiol 84(4):1305–1310

    CAS  PubMed  Google Scholar 

  51. 51.

    Snow CM, Shaw JM, Winters KM, Witzke KA (2000) Long-term exercise using weighted vests prevents hip bone loss in postmenopausal women. J Gerontol A Biol Sci Med Sci 55(9):M489–M491

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Ricci TA, Heymsfield SB, Pierson RN, Stahl T, Chowdhury HA, Shapses SA (2001) Moderate energy restriction increases bone resorption in obese postmenopausal women. Am J Clin Nutr 73(2):347–352

    CAS  PubMed  Google Scholar 

  53. 53.

    Casagrande DS, Repetto G, Mottin CC, Shah J, Pietrobon R, Worni M, Schaan BD (2012) Changes in bone mineral density in women following 1-year gastric bypass surgery. Obes Surg 22(8):1287–1292

    PubMed  Article  Google Scholar 

  54. 54.

    Fleischer J, Stein E, Bessler M, Badia MD, Restuccia N, Olivero-Rivera L, McMahon D, Silverberg S (2008) The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab 93(10):3735–3740

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Rajamanohara R, Robinson J, Rymer J, Patel R, Fogelman I, Blake GM (2011) The effect of weight and weight change on the long-term precision of spine and hip DXA measurements. Osteoporos Int 22(5):1503–1512

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Elaine WY, Bouxsein ML, Putman MS, Monis EL, Roy AE, Pratt JSA, Butsch WS, Finkelstein JS (2015) Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 100(4):1452–1459

    Article  CAS  Google Scholar 

  57. 57.

    Guney E, Kisakol G, Ozgen G, Yilmaz C, Yilmaz R, Kabalak T (2003) Effect of weight loss on bone metabolism: comparison of vertical banded gastroplasty and medical intervention. Obes Surg 13(3):383–388

    PubMed  Article  Google Scholar 

  58. 58.

    Kerr D, Ackland T, Maslen B, Morton A, Prince R (2001) Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Metab Res 16(1):175–181

    CAS  Article  Google Scholar 

  59. 59.

    Shibata Y, Ohsawa I, Watanabe T, Miura T, Sato Y (2003) Effects of physical training on bone mineral density and bone metabolism. J Physiol Anthropol Appl Human Sci 22(4):203–208

    PubMed  Article  Google Scholar 

  60. 60.

    Boden H, Adolphson P (2004) No adverse effects of early weight bearing after uncemented total hip arthroplasty: a randomized study of 20 patients. Acta Orthop Scand 75(1):21–29

    PubMed  Article  Google Scholar 

  61. 61.

    Bravo G, Gauthier P, Roy PM, Payette H, Gaulin P (1997) A weight-bearing, water-based exercise program for osteopenic women: its impact on bone, functional fitness, and well-being. Arch Phys Med Rehabil 78(12):1375–1380

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Bravo G, Gauthier P, Roy PM, Payette H, Gaulin P, Harvey M, Peloquin L, Dubois MF (1996) Impact of a 12-month exercise program on the physical and psychological health of osteopenic women. J Am Geriatr Soc 44(7):756–762

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Chan K, Qin L, Lau M, Woo J, Au S, Choy W, Lee K, Lee S (2004) A randomized, prospective study of the effects of Tai Chi Chun exercise on bone mineral density in postmenopausal women. Arch Phys Med Rehabil 85(5):717–722

    PubMed  Article  Google Scholar 

  64. 64.

    Goodyear SR, Barr RJ, McCloskey E, Alesci S, Aspden RM, Reid DM, Gregory JS (2013) Can we improve the prediction of hip fracture by assessing bone structure using shape and appearance modelling? Bone 53(1):188–193

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Hampson G, Martin FC, Moffat K, Vaja S, Sankaralingam S, Cheung J, Blake GM, Fogelman I (2003) Effects of dietary improvement on bone metabolism in elderly underweight women with osteoporosis: a randomised controlled trial. Osteoporos Int 14(9):750–756

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Harris S, Dallal GE, Dawson-Hughes B (1992) Influence of body weight on rates of change in bone density of the spine, hip, and radius in postmenopausal women. Calcif Tissue Int 50(1):19–23

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Lord SR, Ward JA, Williams P, Zivanovic E (1996) The effects of a community exercise program on fracture risk factors in older women. Osteoporos Int 6(5):361–367

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Manios Y, Moschonis G, Koutsikas K, Papoutsou S, Petraki I, Bellou E, Naoumi A, Kostea S, Tanagra S (2009) Changes in body composition following a dietary and lifestyle intervention trial: the postmenopausal health study. Maturitas 62(1):58–65

    PubMed  Article  Google Scholar 

  69. 69.

    McCartney N, Hicks AL, Martin J, Webber CE (1996) A longitudinal trial of weight training in the elderly: continued improvements in year 2. J Gerontol A Biol Sci Med Sci 51(6):B425–B433

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    McMurdo MET, Mole PA, Paterson CR (1997) Controlled trial of weight bearing exercise in older women in relation to bone density and falls. BMJ 314(7080):569

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Nana A, Slater GJ, Hopkins WG, Burke LM (2013) Effects of exercise sessions on DXA measurements of body composition in active people. Med Sci Sports Exerc 45(1):178–185

    PubMed  Article  Google Scholar 

  72. 72.

    Rasmussen MH, Jensen LT, Andersen T, Breum L, Hilsted J (1995) Collagen metabolism in obesity: the effect of weight loss. Int J Obes 19(9):659–663

    CAS  Google Scholar 

  73. 73.

    Baker JF, Østergaard M, George M, Shults J, Emery P, Baker DG, Conaghan PG (2014) Greater body mass independently predicts less radiographic progression on X-ray and MRI over 1–2 years. Ann Rheum Dis 73:1923–1928

    PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Cao JJ, Pasiakos SM, Margolis LM, Sauter ER, Whigham LD, McClung JP, Young AJ, Combs GF Jr (2014) Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized controlled trial. Am J Clin Nutr 99(2):400–407

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Elsisi HFEM, Mousa GSM, Eldesoky MTM (2015) Electromagnetic field versus circuit weight training on bone mineral density in elderly women. Clin Interv Aging 10:539–548

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Sinaki M, Wahner HW, Bergstralh EJ, Hodgson SF, Offord KP, Squires RW, Swee RG, Kao PC (1996) Three-year controlled, randomized trial of the effect of dose-specified loading and strengthening exercises on bone mineral density of spine and femur in nonathletic, physically active women. Bone 19(3):233–244

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Skov AR, Haulrik N, Toubro S, Molgaard C, Astrup A (2002) Effect of protein intake on bone mineralization during weight loss: a 6-month trial. Obes Res 10(6):432–438

    PubMed  Article  Google Scholar 

  78. 78.

    Stengel SV, Kemmler W, Pintag R, Beeskow C, Weineck J, Lauber D, Kalender WA, Engelke K (2005) Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 99(1):181–188

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Suh HS, Hwang IC, Lee KS, Kim KK (2013) Relationships between serum osteocalcin, leptin and the effect of weight loss by pharmacological treatment in healthy, nonsmoking Korean obese adults. Clin Chim Acta 418:17–21

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Pritchard J, Nowson C, Wark J (1996) Bone loss accompanying diet-induced or exercise-induced weight loss: a randomised controlled study. Int J Obes Relat Metab Disord 20(6):513–520

    CAS  PubMed  Google Scholar 

  81. 81.

    Heffron M, Davey R, Cochrane T (1997) Weight-training and bone mass in post-menopausal women (Conference Paper). Sports Exerc Inj 3(3):143–149

    Google Scholar 

  82. 82.

    Avenell A, Richmond P, Lean M, Reid D (1994) Bone loss associated with a high fibre weight reduction diet in postmenopausal women. Eur J Clin Nutr 48(8):561–566

    CAS  PubMed  Google Scholar 

  83. 83.

    Bartels EM, Christensen R, Christensen P, Henriksen M, Bennett A, Gudbergsen H, Boesen M, Bliddal H (2014) Effect of a 16 weeks weight loss program on osteoarthritis biomarkers in obese patients with knee osteoarthritis: a prospective cohort study. Osteoarthritis Cartilage 22(11):1817–1825

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Blain H, Vuillemin A, Teissier A, Hanesse B, Guillemin F, Jeandel C (2001) Influence of muscle strength and body weight and composition on regional bone mineral density in healthy women aged 60 years and over. Gerontology 47(4):207–212

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Ensrud KE, Ewing SK, Stone KL, Cauley JA, Bowman PJ, Cummings SR (2003) Intentional and unintentional weight loss increase bone loss and hip fracture risk in older women. J Am Geriatr Soc 51(12):1740–1747

    PubMed  Article  Google Scholar 

  86. 86.

    Ensrud KE, Fullman RL, Barrett-Connor E, Cauley JA, Stefanick ML, Fink HA, Lewis CE, Orwoll E (2005) Voluntary weight reduction in older men increases hip bone loss: the osteoporotic fractures in men study. J Clin Endocrinol Metab 90(4):1998–2004

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Glauber HS, Vollmer WM, Nevitt MC, Ensrud KE, Orwoll ES (1995) Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J Clin Endocrinol Metab 80(4):1118–1123

    CAS  PubMed  Google Scholar 

  88. 88.

    Gomez-Ambrosi J, Rodriguez A, Catalan V, Frühbeck G (2008) The bone-adipose axis in obesity and weight loss. Obes Surg 18(9):1134–1143

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Hind K, Burrows M (2007) Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone 40(1):14–27

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Ho-Pham LT, Nguyen UDT, Nguyen TV (2014) Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab 99(1):30–38

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Knoke JD, Barrett-Connor E (2003) Weight loss: a determinant of hip bone loss in older men and women the Rancho Bernardo Study. Am J Epidemiol 158(12):1132–1138

    PubMed  Article  Google Scholar 

  92. 92.

    Lenart BA, Neviaser AS, Lyman S, Chang CC, Edobor-Osula F, Steele B, Van Der Meulen MCH, Lorich DG, Lane JM (2009) Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int 20(8):1353–1362

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Macdonald HM, New SA, Campbell MK, Reid DM (2005) Influence of weight and weight change on bone loss in perimenopausal and early postmenopausal Scottish women. Osteoporos Int 16(2):163–171

    PubMed  Article  Google Scholar 

  94. 94.

    Pedone C, Napoli N, Pozzilli P, Rossi FF, Lauretani F, Bandinelli S, Ferrucci L, Antonelli-Incalzi R (2011) Dietary pattern and bone density changes in elderly women: a longitudinal study. J Am Coll Nutr 30(2):149–154

    PubMed  Article  Google Scholar 

  95. 95.

    Ablove T, Binkley N, Leadley S, Shelton J, Ablove R (2015) Body mass index continues to accurately predict percent body fat as women age despite changes in muscle mass and height. Menopause 22(7):727–730

    PubMed  Article  Google Scholar 

  96. 96.

    Clifton PM, Keogh JB, Noakes M (2008) Long-term effects of a high-protein weight-loss diet. Am J Clin Nutr 87(1):23–29

    CAS  PubMed  Google Scholar 

  97. 97.

    Leskinen T, Kujala UM (2015) Health-related findings among twin pairs discordant for leisure-time physical activity for 32 years: the TWINACTIVE study synopsis. Twin Res Hum Genet 18(3):266–272

    PubMed  Article  Google Scholar 

  98. 98.

    Pines A (2012) Weight loss, weight regain and bone health. Climacteric 15(4):317–319

    PubMed  Article  Google Scholar 

  99. 99.

    Puntila E, Kröger H, Lakka T, Tuppurainen M, Jurvelin J, Honkanen R (2001) Leisure-time physical activity and rate of bone loss among peri- and postmenopausal women: a longitudinal study. Bone 29(5):442–446

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Riggio O, Andreoli A, Diana F, Fiore P, Meddi P, Lionetti R, Montagnese F, Merli M, Capocaccia L, De Lorenzo A (1997) Whole body and regional body composition analysis by dual-energy X-ray absorptiometry in cirrhotic patients. Eur J Clin Nutr 51(12):810–814

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Saarelainen J, Kiviniemi V, Kröger H, Tuppurainen M, Niskanen L, Jurvelin J, Honkanen R (2012) Body mass index and bone loss among postmenopausal women: the 10-year follow-up of the OSTPRE cohort. J Bone Miner Metab 30(2):208–216

    PubMed  Article  Google Scholar 

  102. 102.

    Sellmeyer DE, Stone KL, Sebastian A, Cummings SR (2001) A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group. Am J Clin Nutr 73(1):118–122

    CAS  PubMed  Google Scholar 

  103. 103.

    Sirola J, Rikkonen T, Tuppurainen M, Honkanen R, Jurvelin JS, Kroger H (2006) Maintenance of muscle strength may counteract weight-loss-related postmenopausal bone loss—a population-based approach. Osteoporos Int 17(5):775–782

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Von Thun NL, Sukumar D, Heymsfield SB, Shapses SA (2014) Does bone loss begin after weight loss ends? Results 2 years after weight loss or regain in postmenopausal women. Menopause 21(5):501–508

    Article  Google Scholar 

  105. 105.

    Waters DL, Ward AL, Villareal DT (2013) Weight loss in obese adults 65 years and older: a review of the controversy. Exp Gerontol 48(10):1054–1061

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Williams AR, Weiss NS, Ure CL, Ballard J, Daling JR (1982) Effect of weight, smoking, and estrogen use on the risk of hip and forearm fractures in postmenopausal women. Obstet Gynecol 60(6):695–699

    CAS  PubMed  Google Scholar 

  107. 107.

    Hendel HW, Gotfredsen A, Andersen T, Højgaard L, Hilsted J (1996) Body composition during weight loss in obese patients estimated by dual energy X-ray absorptiometry and by total body potassium. Int J Obes 20(12):1111–1119

    CAS  Google Scholar 

  108. 108.

    Hyldstrup L, Andersen T, McNair P, Breum L, Transbol I (1993) Bone metabolism in obesity: changes related to severe overweight and dietary weight reduction. Acta Endocrinol 129(5):393–398

    CAS  PubMed  Google Scholar 

  109. 109.

    Evans EM, Saunders MJ, Spano MA, Arngrimsson SA, Lewis RD, Cureton KJ (1999) Body-composition changes with diet and exercise in obese women: a comparison of estimates from clinical methods and a 4-component model. Am J Clin Nutr 70(1):5–12

    CAS  PubMed  Google Scholar 

  110. 110.

    Evans EM, Saunders MJ, Spano MA, Arngrimsson SA, Lewis RD, Cureton KJ (1999) Effects of diet and exercise on the density and composition of the fat-free mass in obese women. Med Sci Sports Exerc 31(12):1778–1787

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Uusi-Rasi K, Rauhio A, Kannus P, Pasanen M, Kukkonen-Harjula K, Fogelholm M, Sievänen H (2010) Three-month weight reduction does not compromise bone strength in obese premenopausal women. Bone 46(5):1286–1293

    PubMed  Article  Google Scholar 

  112. 112.

    Campbell KL, Foster-Schubert KE, Alfano CM, Wang CC, Wang CY, Duggan CR, Mason C, Imayama I, Kong A, Xiao L, Bain CE, Blackburn GL, Stanczyk FZ, McTiernan A (2012) Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial. J Clin Oncol 30(19):2314–2326

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Cifuentes M, Riedt CS, Brolin RE, Field MP, Sherrell RM, Shapses SA (2004) Weight loss and calcium intake influence calcium absorption in overweight postmenopausal women. Am J Clin Nutr 80(1):123–130

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Conroy R, Girotra M, Shane E, McMahon DJ, Pavlovich KH, Leibel RL, Rosenbaum M, Korner J (2011) Leptin administration does not prevent the bone mineral metabolism changes induced by weight loss. Metabolism 60(9):1222–1226

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Crandall CJ, Yildiz VO, Wactawski-Wende J, Johnson KC, Chen Z, Going SB, Wright NC, Cauley JA (2015) Postmenopausal weight change and incidence of fracture: post hoc findings from Women’s Health Initiative Observational Study and Clinical Trials. BMJ 350:h25

    PubMed  Article  Google Scholar 

  116. 116.

    Forsmo S, Aaen J, Schei B, Langhammer A (2006) What is the influence of weight change on forearm bone mineral density in peri- and postmenopausal women? The Health Study of Nord-Trøndelag, Norway. Am J Epidemiol 164(9):890–897

    PubMed  Article  Google Scholar 

  117. 117.

    Forsmo S, Langhammer A, Schei B (2009) Past and current weight change and forearm bone loss in middle-aged women: the Nord-Trøndelag Health Study, Norway. Menopause 16(6):1197–1204

    PubMed  Article  Google Scholar 

  118. 118.

    Franek E, Wichrowska H, Gozdowski D, Puzianowska-Kuźnicka M (2009) WHO fracture risk calculator (FRAX™) in the assessment of obese patients with osteoporosis. Endokrynol Pol 60(2):82–87

    CAS  PubMed  Google Scholar 

  119. 119.

    Henriksen M, Christensen R, Hunter DJ, Gudbergsen H, Boesen M, Lohmander LS, Bliddal H (2014) Structural changes in the knee during weight loss maintenance after a significant weight loss in obese patients with osteoarthritis: a report of secondary outcome analyses from a randomized controlled trial. Osteoarthritis Cartilage 22(5):639–646

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Hinton PS, LeCheminant JD, Smith BK, Rector RS, Donnelly JE (2009) Weight loss-induced alterations in serum markers of bone turnover persist during weight maintenance in obese men and women. J Am Coll Nutr 28(5):565–573

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Hinton PS, Rector RS, Thomas TR (2006) Weight-bearing, aerobic exercise increases markers of bone formation during short-term weight loss in overweight and obese men and women. Metabolism 55(12):1616–1618

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Hla MM, Davis JW, Ross PD, Yates AJ, Wasnich RD (2001) The relation between lifestyle factors and biochemical markers of bone turnover among early postmenopausal women. Calcif Tissue Int 68(5):291–296

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Hopman WM, Leroux C, Berger C, Joseph L, Barr SI, Prior JC, Harrison M, Poliquin S, Towheed T, Anastassiades T, Goltzman D, Tenenhouse A, Godmaire S, Joyce C, Kovacs C, Sheppard E, Kirkland S, Kaiser S, Stanfield B, Brown JP, Bessette L, Gendreau M, Matthews B, Josse B, Murray T, Gardner-Bray B, Kreiger N, Adachi JD, Papaioannou AA, Pickard L, Olszynski WP, Davison KS, Thingvold J, Hanley DA, Allan J, Vigna Y (2007) Changes in body mass index in Canadians over a five-year period: results of a prospective, population-based study. BMC Public Health 7(1):150–159

    PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Messier SP, Legault C, Loeser RF, Van Arsdale SJ, Davis C, Ettinger WH, DeVita P (2011) Does high weight loss in older adults with knee osteoarthritis affect bone-on-bone joint loads and muscle forces during walking? Osteoarthritis Cartilage 19(3):272–280

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Nguyen T, Sambrook P, Eisman J (1998) Bone loss, physical activity, and weight change in elderly women: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Metab Res 13(9):1458–1467

    CAS  Article  Google Scholar 

  126. 126.

    Sakamoto K, Endo N, Harada A, Sakada T, Tsushita K, Kita K, Hagino H, Sakai A, Yamamoto N, Okamoto T, Liu M, Kokaze A, Suzuki H (2013) Why not use your own body weight to prevent falls? A randomized, controlled trial of balance therapy to prevent falls and fractures for elderly people who can stand on one leg for ≤15 s. J Orthop Sci 18(1):110–120

    PubMed  Article  Google Scholar 

  127. 127.

    Sharp DS, Andrew ME, Burchfiel CM, Violanti JM, Wactawski-Wende J (2012) Body mass index versus dual energy x-ray absorptiometry-derived indexes: predictors of cardiovascular and diabetic disease risk factors. Am J Hum Biol 24(4):400–405

    PubMed  Article  Google Scholar 

  128. 128.

    Uusi-Rasi K, Sievänen H, Heinonen A, Beck TJ, Vuori I (2005) Determinants of changes in bone mass and femoral neck structure, and physical performance after menopause: a 9-year follow-up of initially peri-menopausal women. Osteoporos Int 16(6):616–622

    PubMed  Article  Google Scholar 

  129. 129.

    Wand JS, Smith T, Green JR, Hesp R, Bradbeer JN, Reeve J (1992) Whole-body and site-specific bone remodelling in patients with previous femoral fractures: relationships between reduced physical activity, reduced bone mass and increased bone resorption. Clin Sci 83(6):665–675

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Weinsier RL, Hunter GR, Zuckerman PA, Redden DT, Darnell BE, Larson DE, Newcomer BR, Goran MI (2000) Energy expenditure and free-living physical activity in black and white women: comparison before and after weight loss. Am J Clin Nutr 71(5):1138–1146

    CAS  PubMed  Google Scholar 

  131. 131.

    Berenson JR, Yellin O, Boccia RV, Flam M, Wong SF, Batuman O, Moezi MM, Woytowitz D, Duvivier H, Nassir Y, Swift RA (2008) Zoledronic acid markedly improves bone mineral density for patients with monoclonal gammopathy of undetermined significance and bone loss. Clin Cancer Res 14(19):6289–6295

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Blake GM, Herd RJ, Patel R, Fogelman I (2000) The effect of weight change on total body dual-energy X-ray absorptiometry: results from a clinical trial. Osteoporos Int 11(10):832–839

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Cussler EC, Going SB, Houtkooper LB, Stanford VA, Blew RM, Flint-Wagner HG, Metcalfe LL, Choi JE, Lohman TG (2005) Exercise frequency and calcium intake predict 4-year bone changes in postmenopausal women. Osteoporos Int 16(12):2129–2141

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Cussler EC, Lohman TG, Going SB, Houtkooper LB, Metcalfe LL, Flint-Wagner HG, Harris RB, Teixeira PJ (2003) Weight lifted in strength training predicts bone change in postmenopausal women. Med Sci Sports Exerc 35(1):10–17

    PubMed  Article  Google Scholar 

  135. 135.

    Erlandson KM, Kitch D, Tierney C, Sax PE, Daar ES, Tebas P, Melbourne K, Ha B, Jahed NC, McComsey GA (2013) Weight and lean body mass change with antiretroviral initiation and impact on bone mineral density. AIDS 27(13):2069–2079

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Iwamoto J, Takeda T, Sato Y, Uzawa M (2005) Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res 17(2):157–163

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Patel R, Blake GM, Herd RJM, Fogelman I (1997) The effect of weight change on DXA scans in a 2-year trial of etidronate therapy. Calcif Tissue Int 61(5):393–399

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Prince R, Devine A, Dick I, Criddle A, Kerr D, Kent N, Price R, Randell A (1995) The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res 10(7):1068–1075

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Ricci TA, Chowdhury HA, Heymsfield SB, Stahl T, Pierson RN, Shapses SA (1998) Calcium supplementation suppresses bone turnover during weight reduction in postmenopausal women. J Bone Miner Metab Res 13(6):1045–1050

    CAS  Article  Google Scholar 

  140. 140.

    Riedt CS, Cifuentes M, Stahl T, Chowdhury HA, Schlussel Y, Shapses SA (2005) Overweight postmenopausal women lose bone with moderate weight reduction and 1 g/day calcium intake. J Bone Miner Metab Res 20(3):455–463

    CAS  Article  Google Scholar 

  141. 141.

    Ryan CW, Huo D, Demers LM, Beer TM, Lacerna LV (2006) Zoledronic acid initiated during the first year of androgen deprivation therapy increases bone mineral density in patients with prostate cancer. J Urol 176(3):972–978

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Wagner G, Kindrick S, Hertzler S, DiSilvestro RA (2007) Effects of various forms of calcium on body weight and bone turnover markers in women participating in a weight loss program. J Am Coll Nutr 26(5):456–461

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Wood AD, Secombes KR, Thies F, Aucott LS, Black AJ, Reid DM, Mavroeidi A, Simpson WG, Fraser WD, Macdonald HM (2014) A parallel group double-blind RCT of vitamin D3 assessing physical function: is the biochemical response to treatment affected by overweight and obesity? Osteoporos Int 25(1):305–315

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Allison SJ, Folland JP, Rennie WJ, Summers GD, Brooke-Wavell K (2013) High impact exercise increased femoral neck bone mineral density in older men: a randomised unilateral intervention. Bone 53(2):321–328

    PubMed  Article  Google Scholar 

  145. 145.

    Bosy‐Westphal A, Later W, Schautz B, Lagerpusch M, Goele K, Heller M, Glüer CC, Müller MJ (2011) Impact of intra‐ and extra‐osseous soft tissue composition on changes in bone mineral density with weight loss and regain. Obesity 19(7):1503–1510

    PubMed  Article  Google Scholar 

  146. 146.

    Compston J, Croucher P, Laskey M, Coxon A, Kreitzman S (1992) The effect of diet-induced weight loss on total body bone mass. Bone Miner 82(4):429–432

    CAS  Google Scholar 

  147. 147.

    Fogelholm GM, Sievänen HT, Kukkonen-Harjula TK, Pasanen ME (2001) Bone mineral density during reduction, maintenance and regain of body weight in premenopausal, obese women. Osteoporos Int 12(3):199–206

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Gossain VV, Rao DS, Carella MJ, Divine G, Rovner D (1998) Bone mineral density (BMD) in obesity effect of weight loss. J Med 30(5–6):367–376

    Google Scholar 

  149. 149.

    Hinton PS, Rector RS, Linden MA, Warner SO, Dellsperger KC, Chockalingam A, Whaley-Connell AT, Liu Y, Thomas TR (2012) Weight-loss-associated changes in bone mineral density and bone turnover after partial weight regain with or without aerobic exercise in obese women. Eur J Clin Nutr 66(5):606–612

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Ramsdale S, Bassey E (1994) Changes in bone mineral density associated with dietary-induced loss of body mass in young women. Clin Sci 87(3):343–348

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Ruiz-Montero PJ, Castillo-Rodriguez A, Mikalacki M, Nebojsa C, Korovljev D (2014) 24-Weeks Pilates-aerobic and educative training to improve body fat mass in elderly Serbian women. Clin Interv Aging 9:243–248

    PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Van Loan MD, Johnson HL, Barbieri TF (1998) Effect of weight loss on bone mineral content and bone mineral density in obese women. Am J Clin Nutr 67(4):734–738

    PubMed  Google Scholar 

  153. 153.

    Villalon KL, Gozansky WS, Van Pelt RE, Wolfe P, Jankowski CM, Schwartz RS, Kohrt WM (2011) A losing battle: weight regain does not restore weight loss-induced bone loss in postmenopausal women. Obesity (Silver Spring) 19(12):2345–2350

    CAS  Article  Google Scholar 

  154. 154.

    Caillot-Augusseau A, Lafage-Proust MH, Margaillan P, Vergely N, Faure S, Paillet S, Lang F, Alexandre C, Estour B (2000) Weight gain reverses bone turnover and restores circadian variation of bone resorption in anorexic patients. Clin Endocrinol 52(1):113–121

    CAS  Article  Google Scholar 

  155. 155.

    Gerhardt DMJM, Smolders JMH, Rijnders TAJM, Hol A, van Susante JLC (2015) Changes in bone mineral density and femoral neck narrowing in the proximal femur three to five years after hip resurfacing versus conventional total hip arthroplasty. J Arthroplasty 30(2):308–314

    PubMed  Article  Google Scholar 

  156. 156.

    KJones KP, Ravnikar VA, Tulchinsky D, Schiff I (1985) Comparison of bone density in amenorrheic women due to athletics, weight loss, and premature menopause. Obstet Gynecol 66(1):5–8

    Google Scholar 

  157. 157.

    Kujath AS, Quinn L, Elliott ME, Lecaire TJ, Binkley N, Molino AR, Danielson KK (2015) Different health behaviours and clinical factors associated with bone mineral density and bone turnover in premenopausal women with and without type 1 diabetes. Diabetes Metab Res Rev 31(4):421–432

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Andersen RE, Wadden TA, Herzog RJ (1997) Changes in bone mineral content in obese dieting women. Metabolism 46(8):857–861

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Beavers DP, Beavers KM, Loeser RF, Walton NR, Lyles MF, Nicklas BJ, Shapses SA, Newman JJ, Messier SP (2014) The independent and combined effects of intensive weight loss and exercise training on bone mineral density in overweight and obese older adults with osteoarthritis. Osteoarthritis Cartilage 22(6):726–733

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160.

    Campbell WW, Tang M (2010) Protein intake, weight loss, and bone mineral density in postmenopausal women. J Gerontol A Biol Sci Med Sci 65 A(10):1115–1122

    Article  CAS  Google Scholar 

  161. 161.

    Chao D, Espeland MA, Farmer D, Register TC, Lenchik L, Applegate WB, Ettinger WH Jr (2000) Effect of voluntary weight loss on bone mineral density in older overweight women. J Am Geriatr Soc 48(7):753–759

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Hamilton KC, Fisher G, Roy JL, Gower BA, Hunter GR (2013) The effects of weight loss on relative bone mineral density in premenopausal women. Obesity 21(3):441–448

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Jessup JV, Horne C, Vishen RK, Wheeler D (2003) Effects of exercise on bone density, balance, and self efficacy in older women. Biol Res Nurs 4(3):171–180

    PubMed  Article  Google Scholar 

  164. 164.

    Kohrt WM, Ehsani AA, Birge SJ Jr (1997) Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. J Bone Miner Metab Res 12(8):1253–1261

    CAS  Article  Google Scholar 

  165. 165.

    Pop LC, Sukumar D, Tomaino K, Schlussel Y, Schneider SH, Gordon CL, Wang X, Shapses SA (2015) Moderate weight loss in obese and overweight men preserves bone quality. Am J Clin Nutr 101(3):659–667

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. 166.

    Redman LM, Rood J, Anton SD, Champagne C, Smith SR, Ravussin E (2008) Calorie restriction and bone health in young, overweight individuals. Arch Intern Med 168(17):1859–1866

    PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Riedt CS, Schlussel Y, von Thun N, Ambia-Sobhan H, Stahl T, Field MP, Sherrell RM, Shapses SA (2007) Premenopausal overweight women do not lose bone during moderate weight loss with adequate or higher calcium intake. Am J Clin Nutr 85(4):972–980

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Schwartz AV, Johnson KC, Kahn SE, Shepherd JA, Nevitt MC, Peters AL, Walkup MP, Hodges A, Williams CC, Bray GA (2012) Effect of 1 year of an intentional weight loss intervention on bone mineral density in type 2 diabetes: results from the Look AHEAD randomized trial. J Bone Miner Res 27(3):619–627

    PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Shapses SA, Von Thun NL, Heymsfield SB, Ricci TA, Ospina M, Pierson RN Jr, Stahl T (2001) Bone turnover and density in obese premenopausal women during moderate weight loss and calcium supplementation. J Bone Miner Metab Res 16(7):1329–1336

    CAS  Article  Google Scholar 

  170. 170.

    Singh JA, Schmitz KH, Petit MA (2009) Effect of resistance exercise on bone mineral density in premenopausal women. Joint Bone Spine 76(3):273–280

    PubMed  Article  Google Scholar 

  171. 171.

    Stewart KJ, Bacher AC, Hees PS, Tayback M, Ouyang P, De Beur SJ (2005) Exercise effects on bone mineral density: relationships to changes in fitness and fatness. Am J Prev Med 28(5):453–460

    PubMed  Article  Google Scholar 

  172. 172.

    Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, Napoli N, Qualls C, Shah K (2011) Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med 364(13):1218–1229

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. 173.

    Villareal DT, Fontana L, Weiss EP, Racette SB, Steger-May K, Schechtman KB, Klein S, Holloszy JO (2006) Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med 166(22):2502–2510

    PubMed  Article  Google Scholar 

  174. 174.

    Villareal DT, Shah K, Banks MR, Sinacore DR, Klein S (2008) Effect of weight loss and exercise therapy on bone metabolism and mass in obese older adults: a one-year randomized controlled trial. J Clin Endocrinol Metab 93(6):2181–2187

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Yoo EJ, Jun TW, Hawkins SA (2010) The effects of a walking exercise program on fall-related fitness, bone metabolism, and fall-related psychological factors in elderly women. Res Sports Med 18(4):236–250

    PubMed  Article  Google Scholar 

  176. 176.

    Rhodes EC, Martin AD, Taunton JE, Donnelly M, Warren J, Elliot J (2000) Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J Sports Med 34(1):18–22

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  177. 177.

    Salamone LM, Cauley JA, Black DM, Simkin-Silverman L, Lang W, Gregg E, Palermo L, Epstein RS, Kuller LH, Wing R (1999) Effect of a lifestyle intervention on bone mineral density in premenopausal women: a randomized trial. Am J Clin Nutr 70(1):97–103

    CAS  PubMed  Google Scholar 

  178. 178.

    Warren M, Petit MA, Hannan PJ, Schmitz KH (2008) Strength training effects on bone mineral content and density in premenopausal women. Med Sci Sports Exerc 40(7):1282–1288

    PubMed  Article  Google Scholar 

  179. 179.

    Villareal DT, Fontana L, Das SK, Redman L, Smith SR, Saltzman E, Bales C, Rochon J, Pieper C, Huang M (2015) Effect of two‐year caloric restriction on bone metabolism and bone mineral density in non‐obese younger adults: a randomized clinical trial. J Bone Miner Metab Res

  180. 180.

    Bassey EJ, Ramsdale SJ (1995) Weight-bearing exercise and ground reaction forces: a 12-month randomized controlled trial of effects on bone mineral density in healthy postmenopausal women. Bone 16(4):469–476

    CAS  PubMed  Google Scholar 

  181. 181.

    De Jong N, Chin A, Paw MJM, De Groot LCPGM, Hiddink GJ, Van Staveren WA (2000) Dietary supplements and physical exercise affecting bone and body composition in frail elderly persons. Am J Public Health 90(6):947–954

    PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    Englund U, Littbrand H, Sondell A, Pettersson U, Bucht G (2005) A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporos Int 16(9):1117–1123

    PubMed  Article  Google Scholar 

  183. 183.

    Svendsen OL, Hassager C, Christiansen C (1993) Effect of an energy-restrictive diet, with or without exercise, on lean tissue mass, resting metabolic rate, cardiovascular risk factors, and bone in overweight postmenopausal women. Am J Med 95(2):131–140

    CAS  PubMed  Article  Google Scholar 

  184. 184.

    Kim YS, Nam JS, Yeo DW, Kim KR, Suh SH, Ahn CW (2015) The effects of aerobic exercise training on serum osteocalcin, adipocytokines and insulin resistance on obese young males. Clin Endocrinol 82(5):686–694

    CAS  Article  Google Scholar 

  185. 185.

    Nakata Y, Ohkawara K, Lee DJ, Okura T, Tanaka K (2008) Effects of additional resistance training during diet-induced weight loss on bone mineral density in overweight premenopausal women. J Bone Miner Metab 26(2):172–177

    PubMed  Article  Google Scholar 

  186. 186.

    Park HA, Lee JS, Kuller LH, Cauley JA (2007) Effects of weight control during the menopausal transition on bone mineral density. J Clin Endocrinol Metab 92(10):3809–3815

    CAS  PubMed  Article  Google Scholar 

  187. 187.

    Hui SS-C, Xie YJ, Woo J, Kwok TC-Y (2015) Effects of Tai Chi and walking exercises on weight loss, metabolic syndrome parameters, and bone mineral density: a cluster randomized controlled trial. Evid Based Complement Alternat Med

  188. 188.

    Hosny IA, Elghawabi HS, Fahmy Younan WB, Sabbour AA, Messih Gobrial MA (2012) Beneficial impact of aerobic exercises on bone mineral density in obese premenopausal women under caloric restriction. Skeletal Radiol 41(4):423–427

    PubMed  Article  Google Scholar 

  189. 189.

    Whiteford J, Ackland TR, Dhaliwal SS, James AP, Woodhouse JJ, Price R, Prince RL, Kerr DA (2010) Effects of a 1-year randomized controlled trial of resistance training on lower limb bone and muscle structure and function in older men. Osteoporos Int 21(9):1529–1536

    CAS  PubMed  Article  Google Scholar 

  190. 190.

    Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555

    CAS  PubMed  Article  Google Scholar 

  191. 191.

    Bonnick SL (2010) Skeletal anatomy in densitometry. In: Bone densitometry in clinical practice. Springer, pp 35–78

  192. 192.

    Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  193. 193.

    Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD (2009) Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab 94(9):3387–3393

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. 194.

    Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316(2):129–139

    CAS  PubMed  Article  Google Scholar 

  195. 195.

    Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG (2000) Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 92(1):73–78

    CAS  PubMed  Article  Google Scholar 

  196. 196.

    Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, Karalis A, Mantzoros CS (2004) Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 351(10):987–997

    CAS  PubMed  Article  Google Scholar 

  197. 197.

    Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL et al (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175(2):405–415

    CAS  PubMed  Article  Google Scholar 

  198. 198.

    Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner Metab Res 17(2):200–209

    CAS  Article  Google Scholar 

  199. 199.

    Lenchik L, Register T, Hsu F, Lohman K, Nicklas B, Freedman B, Langefeld C, Carr J, Bowden D (2003) Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33(4):646–651

    CAS  PubMed  Article  Google Scholar 

  200. 200.

    Williams GA, Wang Y, Callon KE, Watson M, Lin J-m, Lam JB, Costa JL, Orpe A, Broom N, Naot D (2009) In vitro and in vivo effects of adiponectin on bone. Endocrinology 150(8):3603–3610

    CAS  PubMed  Article  Google Scholar 

  201. 201.

    Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol 8(1):51–63

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  202. 202.

    Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, Franklin BA, Goldstein LB, Greenland P, Grundy SM (2002) AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. Circulation 106(3):388–391

    PubMed  Article  Google Scholar 

  203. 203.

    Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, Liao EY (2006) Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Metab Res 21(10):1648–1656

    CAS  Article  Google Scholar 

  204. 204.

    Dennison E, Syddall H, Sayer AA, Craighead S, Phillips D, Cooper C (2004) Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire Cohort Study: evidence for an indirect effect of insulin resistance? Diabetologia 47(11):1963–1968

    CAS  PubMed  Article  Google Scholar 

  205. 205.

    Birkeland KI, Hanssen KF, Torjesen PA, Vaaler S (1993) Level of sex hormone-binding globulin is positively correlated with insulin sensitivity in men with type 2 diabetes. J Clin Endocrinol Metab 76(2):275–278

    CAS  PubMed  Google Scholar 

  206. 206.

    Thrailkill KM, Lumpkin CK, Bunn RC, Kemp SF, Fowlkes JL (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metabol 289(5):E735–E745

    CAS  Article  Google Scholar 

  207. 207.

    Pei L, Tontonoz P (2004) Fat’s loss is bone’s gain. J Clin Invest 113(6):805–807

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  208. 208.

    Hawkins J, Cifuentes M, Pleshko NL, Ambia-Sobhan H, Shapses SA (2010) Energy restriction is associated with lower bone mineral density of the tibia and femur in lean but not obese female rats. J Nutr 140(1):31–37

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  209. 209.

    Cifuentes M, Advis JP, Shapses SA (2004) Estrogen prevents the reduction in fractional calcium absorption due to energy restriction in mature rats. J Nutr 134(8):1929–1934

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210.

    Babatunde O, Forsyth J, Gidlow C (2012) A meta-analysis of brief high-impact exercises for enhancing bone health in premenopausal women. Osteoporos Int 23(1):109–119

    CAS  PubMed  Article  Google Scholar 

  211. 211.

    Shapses SA, Sukumar D (2012) Bone metabolism in obesity and weight loss. Annu Rev Nutr 32:287–314

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

Each author acknowledges he/she has participated in the work in a substantive way and is prepared to take full responsibility for the work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Shab-Bidar.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 59 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soltani, S., Hunter, G.R., Kazemi, A. et al. The effects of weight loss approaches on bone mineral density in adults: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 27, 2655–2671 (2016). https://doi.org/10.1007/s00198-016-3617-4

Download citation

Keywords

  • Bone mineral density
  • Calorie restriction
  • Meta-analysis
  • Obesity
  • Systematic review
  • Weight reduction