Skip to main content

Advertisement

Log in

Novel effects of sarcopenic osteoarthritis on metabolic syndrome, insulin resistance, osteoporosis, and bone fracture: the national survey

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study compared the effects sarcopenic osteoarthritis on metabolic syndrome, insulin resistance, osteoporosis, and bone fracture. By using national survey data, we suggest that the relationship between sarcopenia and metabolic syndrome or insulin resistance is potentiated by the severity of osteoarthritis and is independent of body weight.

Introduction

Sarcopenia and osteoarthritis are known risk factors for metabolic syndrome. However, their combined effects on metabolic syndrome, insulin resistance and osteoporosis remain uncertain.

Methods

We used data from the fifth Korean National Health and Nutrition Examination Survey using a total of 3158 adults (age >50 years). Sarcopenia was defined as a skeletal muscle index score (appendicular skeletal muscle mass/body weight) within the fifth percentile of sex-matched younger reference participants. Radiographic knee osteoarthritis was defined as a Kellgren-Lawrence (K-L) grade of 2 or greater. Metabolic syndrome was diagnosed using the National Cholesterol Education Program criteria. Insulin resistance was evaluated using the homeostasis model assessment-estimated insulin resistance index (HOMA-IR). Osteoporosis was defined using the World Health Organization T-score criteria.

Results

In multivariable logistic regression analysis, the sarcopenic osteoarthritis group had a higher odds ratio (OR) for metabolic syndrome (OR = 11.00, 95 % confidential interval (CI) = 2.12–56.99, p = 0.013) than the non-sarcopenic osteoarthritis (OR = 1.02, 95 % CI = 0.65–1.62, p = 0.972) and sarcopenic non-osteoarthritis groups (OR = 7.15, 95 % CI = 1.57–32.53, p = 0.027). Similarly, sarcopenic osteoarthritis had a greater OR of highest HOMA-IR quartiles (OR = 8.19, 95 % CI = 2.03–33.05, p = 0.003) than the other groups. Overall, the association between the K-L grade and body mass index was significant; however, this significance was lower in individuals with sarcopenia and was lost in those with sarcopenic osteoarthritis. Additionally, osteoporosis and bone fracture were not associated to sarcopenic osteoarthritis (p > 0.05).

Conclusions

These results suggest that the relationship between sarcopenia and metabolic syndrome or insulin resistance is potentiated by the severity of osteoarthritis and is independent of body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANCOVA:

Analysis of covariance

ASM:

Appendicular skeletal muscle mass

BMI:

Body mass index

BP:

Blood pressure

BMD:

Bone mineral densitometry

CI:

Confidential intervals

HDL:

High-density lipoprotein

HOMA-IR:

Homeostasis model assessment-estimated insulin resistance index.

IL:

Interleukin

K-L grade:

Kellgren-Lawrence grade

KNHANES:

Korean National Health and Nutrition Examination Survey

LDL:

Low-density lipoprotein

MetS:

Metabolic syndrome

NCEP-ATP:

National Cholesterol Education Program-Adult Treatment Panel

OA:

Osteoarthritis

OR:

Odds ratio

SE:

Standard error

SMI:

Skeletal muscle index

SR:

Sarcopenia

TNF:

Tumor necrosis factor

References

  1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39(4):412–23

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12(4):249–56

    Article  PubMed  Google Scholar 

  3. Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G et al (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 29(2):154–9

    Article  CAS  PubMed  Google Scholar 

  4. Waters DL, Baumgartner RN (2011) Sarcopenia and obesity. Clin Geriatr Med 27(3):401–21

    Article  PubMed  Google Scholar 

  5. Kim TN, Park MS, Lim KI, Yang SJ, Yoo HJ, Kang HJ et al (2011) Skeletal muscle mass to visceral fat area ratio is associated with metabolic syndrome and arterial stiffness: The Korean Sarcopenic Obesity Study (KSOS). Diabetes Res Clin Pract 93(2):285–91

    Article  PubMed  Google Scholar 

  6. Lim S, Kim JH, Yoon JW, Kang SM, Choi SH, Park YJ et al (2010) Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care 33(7):1652–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lim KI, Yang SJ, Kim TN, Yoo HJ, Kang HJ, Song W et al (2010) The association between the ratio of visceral fat to thigh muscle area and metabolic syndrome: the Korean Sarcopenic Obesity Study (KSOS). Clin Endocrinol (Oxf) 73(5):588–94

    Article  CAS  Google Scholar 

  8. Kim HG, Han J, Kim MH, Cho KH, Shin IH, Kim GH et al (2009) Prevalence of clonorchiasis in patients with gastrointestinal disease: a Korean nationwide multicenter survey. World J Gastroenterol 15(1):86–94

    Article  PubMed  PubMed Central  Google Scholar 

  9. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB (1999) Elevated C-reactive protein levels in overweight and obese adults. JAMA 282(22):2131–5

    Article  CAS  PubMed  Google Scholar 

  10. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–7

    Article  CAS  PubMed  Google Scholar 

  11. Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V (2008) Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 18(5):388–95

    Article  CAS  PubMed  Google Scholar 

  12. Cho HJ, Chang CB, Kim KW, Park JH, Yoo JH, Koh IJ et al (2011) Gender and prevalence of knee osteoarthritis types in elderly Koreans. J Arthroplasty 26(7):994–9

    Article  PubMed  Google Scholar 

  13. Park H, Lee SK (2011) Association of obesity with osteoarthritis in elderly Korean women. Maturitas 70(1):65–8

    Article  PubMed  Google Scholar 

  14. Chapple CM, Nicholson H, Baxter GD, Abbott JH (2011) Patient characteristics that predict progression of knee osteoarthritis: a systematic review of prognostic studies. Arthritis Care Res (Hoboken) 63(8):1115–25

    Article  Google Scholar 

  15. Thijssen E, van Caam A, van der Kraan PM (2015) Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology (Oxford) 54(4):588–600

    Article  Google Scholar 

  16. Carman WJ, Sowers M, Hawthorne VM, Weissfeld LA (1994) Obesity as a risk factor for osteoarthritis of the hand and wrist: a prospective study. Am J Epidemiol 139(2):119–29

    CAS  PubMed  Google Scholar 

  17. Sayer AA, Poole J, Cox V, Kuh D, Hardy R, Wadsworth M et al (2003) Weight from birth to 53 years: a longitudinal study of the influence on clinical hand osteoarthritis. Arthritis Rheum 48(4):1030–3

    Article  PubMed  Google Scholar 

  18. Sturmer T, Sun Y, Sauerland S, Zeissig I, Gunther KP, Puhl W et al (1998) Serum cholesterol and osteoarthritis. The baseline examination of the Ulm Osteoarthritis Study. J Rheumatol 25(9):1827–32

    CAS  PubMed  Google Scholar 

  19. Davies-Tuck ML, Hanna F, Davis SR, Bell RJ, Davison SL, Wluka AE et al (2009) Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women - a prospective cohort study. Arthritis Res Ther 11(6):R181

    Article  PubMed  PubMed Central  Google Scholar 

  20. Triantaphyllidou IE, Kalyvioti E, Karavia E, Lilis I, Kypreos KE, Papachristou DJ (2013) Perturbations in the HDL metabolic pathway predispose to the development of osteoarthritis in mice following long-term exposure to western-type diet. Osteoarthr Cartil 21(2):322–30

    Article  PubMed  Google Scholar 

  21. Lippiello L, Walsh T, Fienhold M (1991) The association of lipid abnormalities with tissue pathology in human osteoarthritic articular cartilage. Metabolism 40(6):571–6

    Article  CAS  PubMed  Google Scholar 

  22. Tsezou A, Iliopoulos D, Malizos KN, Simopoulou T (2010) Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes. J Orthop Res 28(8):1033–9

    CAS  PubMed  Google Scholar 

  23. Pluijm SM, Visser M, Smit JH, Popp-Snijders C, Roos JC, Lips P (2001) Determinants of bone mineral density in older men and women: body composition as mediator. J Bone Min Res Off J Am Soc Bone Min Res 16:2142–2151

    Article  CAS  Google Scholar 

  24. Taaffe DR, Cauley JA, Danielson M, Nevitt MC, Lang TF, Bauer DC, Harris TB (2001) Race and sex effects on the association between muscle strength, soft tissue, and bone mineral density in healthy elders: the Health, Aging, and Body Composition Study. J Bone Min Res Off J Am Soc Bone Min Res 16:1343–1352

    Article  CAS  Google Scholar 

  25. Joo NS, Dawson-Hughes B, Yeum KJ (2013) 25-Hydroxyvitamin D, calcium intake, and bone mineral content in adolescents and young adults: analysis of the fourth and fifth Korea National Health and Nutrition Examination Survey (KNHANES IV-2, 3, 2008–2009 and V-1, 2010). J Clin Endocrinol Metab 98(9):3627–36

    Article  CAS  PubMed  Google Scholar 

  26. Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J et al (1990) Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr 52(2):214–8

    CAS  PubMed  Google Scholar 

  27. Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50(5):889–96

    Article  PubMed  Google Scholar 

  28. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Orimo H, Hayashi Y, Fukunaga M et al (2001) Diagnostic criteria for primary osteoporosis: year 2000 revision. J Bone Miner Metab 19:331–337

    Article  CAS  PubMed  Google Scholar 

  30. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA et al (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112(17):2735–52

    Article  PubMed  Google Scholar 

  31. Lee SY, Park HS, Kim DJ, Han JH, Kim SM, Cho GJ et al (2007) Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res Clin Pract 75(1):72–80

    Article  PubMed  Google Scholar 

  32. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–9

    Article  CAS  PubMed  Google Scholar 

  33. Roubenoff R (2000) Sarcopenic obesity: does muscle loss cause fat gain? Lessons from rheumatoid arthritis and osteoarthritis. Ann N Y Acad Sci 904:553–7

    Article  CAS  PubMed  Google Scholar 

  34. Srikanthan P, Hevener AL, Karlamangla AS (2010) Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS ONE 5(5):e10805

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim TN, Yang SJ, Yoo HJ, Lim KI, Kang HJ, Song W et al (2009) Prevalence of sarcopenia and sarcopenic obesity in Korean adults: the Korean sarcopenic obesity study. Int J Obes (Lond) 33(8):885–92

    Article  CAS  Google Scholar 

  36. Lee S, Kim TN, Kim SH (2012) Sarcopenic obesity is more closely associated with knee osteoarthritis than is nonsarcopenic obesity: a cross-sectional study. Arthritis Rheum 64(12):3947–54

    Article  PubMed  Google Scholar 

  37. Haseeb A, Haqqi TM (2013) Immunopathogenesis of osteoarthritis. Clin Immunol 146(3):185–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loeser RF (2010) Age-related changes in the musculoskeletal system and the development of osteoarthritis. Clin Geriatr Med 26(3):371–86

    Article  PubMed  PubMed Central  Google Scholar 

  39. Metcalfe D, Harte AL, Aletrari MO, Al Daghri NM, Al Disi D, Tripathi G et al (2012) Does endotoxaemia contribute to osteoarthritis in obese patients? Clin Sci 123(11):627–34

    Article  CAS  PubMed  Google Scholar 

  40. Papalia R, Zampogna B, Torre G, Lanotte A, Vasta S, Albo E et al (2014) Sarcopenia and its relationship with osteoarthritis: risk factor or direct consequence? Musculoskelet Surg 98(1):9–14

    Article  CAS  PubMed  Google Scholar 

  41. Stannus OP, Jones G, Blizzard L, Cicuttini FM, Ding C (2013) Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: a prospective cohort study. Ann Rheum Dis 72(4):535–40

    Article  CAS  PubMed  Google Scholar 

  42. Gomis A, Miralles A, Schmidt RF, Belmonte C (2007) Nociceptive nerve activity in an experimental model of knee joint osteoarthritis of the guinea pig: effect of intra-articular hyaluronan application. Pain 130(1–2):126–36

    Article  CAS  PubMed  Google Scholar 

  43. Shin D (2014) Association between metabolic syndrome, radiographic knee osteoarthritis, and intensity of knee pain: results of a national survey. J Clin Endocrinol Metab 99(9):3177–83

    Article  CAS  PubMed  Google Scholar 

  44. Kim JH, Cho JJ, Park YS (2015) Relationship between sarcopenic obesity and cardiovascular disease risk as estimated by the Framingham risk score. J Korean Med Sci 30(3):264–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Min Res Off J Am Soc Bone Min Res 23:17–29

    Article  CAS  Google Scholar 

  46. Roodman GD (1993) Role of cytokines in the regulation of bone resorption. Calcif Tissue Int 53(Suppl 1):S94–98

    Article  CAS  PubMed  Google Scholar 

  47. Yoo HJ, Park MS, Yang SJ, Kim TN, Lim KI, Kang HJ, Song W, Baik SH, Choi DS, Choi KM (2012) The differential relationship between fat mass and bone mineral density by gender and menopausal status. J Bone Miner Metab 30:47–53

    Article  PubMed  Google Scholar 

  48. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W et al (2010) Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care 33(7):1497–9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Authors’ contributions

Sang Mi Chung, Myung Han Hyun, Eunmi Lee, and Hong Seog Seo are responsible for the conception and design of the study. Sang Mi Chung, Eunmi Lee, and Myung Han Hyun are responsible for the the acquisition of data. Sang Mi Chung, Myung Han Hyun, Eunmi Lee, and Hong Seog Seo are responsible for the analysis and interpretation of data. Sang Mi Chung, Myung Han Hyun, Eunmi Lee, and Hong Seog Seo are responsible for the drafting of the manuscript. Sang Mi Chung, Myung Han Hyun, Eunmi Lee, and Hong Seog Seo are responsible for the critical revision of the manuscript for important intellectual content. Myung Han Hyun is responsible for the statistical analysis. Hong Seog Seo is responsible for the administrative support and study supervision. Sang Mi Chung, Myung Han Hyun, Eunmi Lee, and Hong Seog Seo are responsible for the final approval of manuscript.

Author access to data

Hong Seog Seo and Eunmi Lee had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Lee or H. S. Seo.

Ethics declarations

Conflicts of interest

None.

Source of funding and support

This work was supported by a grant from the Korea Institute of Science and Technology Institutional Program (Project No. 2E24080), a grant from the Korea University-Korea Institute of Science and Technology (KU-KIST) Graduate School of Converging Science and Technology (R1307921).

Additional information

S. M. Chung and M. H. Hyun contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Study flow chart (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, S.M., Hyun, M.H., Lee, E. et al. Novel effects of sarcopenic osteoarthritis on metabolic syndrome, insulin resistance, osteoporosis, and bone fracture: the national survey. Osteoporos Int 27, 2447–2457 (2016). https://doi.org/10.1007/s00198-016-3548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3548-0

Keywords

Navigation