Skip to main content

Advertisement

Log in

Occupation-dependent loading increases bone strength in men

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Ex vivo analyses of humeri and radii from an anthropological collection and in vivo analyses of the distal radius of retired men indicate that occupation-dependent loading positively influences bone strength by an increase of bone size when young followed by a slowdown of the age-related endocortical and trabecular bone alteration.

Introduction

Skeleton responds to mechanical stimuli, but it is not established whether chronic loading in the context of occupational activities (OA) influences bone properties. We assessed the impact of occupation-dependent loading on upper limb bone strength.

Methods

Individuals were classified according to the intensity of physical loading associated with their OA in two models. Ex vivo, computed tomography scans of the humeri and radii of 219 male skeletons (age of death, 20–93 years) from an anthropological collection of the 20th century (Simon collection) were used to determine estimates of bone strength and cross-sectional geometry. In vivo, distal radius were analysed in 180 men enrolled in the Geneva Retirees Cohort study using high-resolution peripheral quantitative computed tomography and finite element analysis.

Results

Heavy-loading OA was associated with higher bone strength in both models. This benefit was associated with higher total area (Tt.Ar), medullary area (Me.Ar) and cortical area (Ct.Ar) in young adult skeletons, but the difference decreased in older age. In older men, the humerus supporting heavy loading had a lower Me.Ar. This effect resulted in greater asymmetries of the Me.Ar and the Ct.Ar/Tt.Ar ratio between the humeri of men with unilateral versus bilateral heavy-loading OA. In vivo, an additional benefit of heavy-loading OA was observed on the distal radius trabecular density and microstructure.

Conclusion

Repeated occupation-dependent loading positively influences bone strength by an increase of bone size when young followed by a slowdown of the age-related endocortical and trabecular bone alteration. These data supports the necessity to promote bone health in the context of sedentary occupation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vehmas T, Solovieva S, Riihimaki H, Luoma K, Leino-Arjas P (2005) Hand workload and the metacarpal cortical index. A study of middle-aged teachers and dentists. Osteoporos Int 16:672–680

    Article  PubMed  Google Scholar 

  2. Islam SS, Biswas RS, Nambiar AM, Syamlal G, Velilla AM, Ducatman AM, Doyle EJ (2001) Incidence and risk of work-related fracture injuries: experience of a state-managed workers' compensation system. J Occup Environ Med 43:140–146

    Article  CAS  PubMed  Google Scholar 

  3. Cooper C, Wickham C, Coggon D (1990) Sedentary work in middle life and fracture of the proximal femur. Br J Ind Med 47:69–70

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jaglal SB, Kreiger N, Darlington GA (1995) Lifetime occupational physical activity and risk of hip fracture in women. Ann Epidemiol 5:321–324

    Article  CAS  PubMed  Google Scholar 

  5. Suen LK (1998) Occupation and risk of hip fracture. J Public Health Med 20:428–433

    Article  CAS  PubMed  Google Scholar 

  6. Moayyeri A, Besson H, Luben RN, Wareham NJ, Khaw KT (2010) The association between physical activity in different domains of life and risk of osteoporotic fractures. Bone 47:693–700

    Article  PubMed  Google Scholar 

  7. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359:1841–1850

    Article  PubMed  Google Scholar 

  8. Dennison EM, Jameson KA, Edwards MH, Denison HJ, Aihie Sayer A, Cooper C (2014) Peripheral quantitative computed tomography measures are associated with adult fracture risk: the Hertfordshire cohort study. Bone 64:13–17

    Article  CAS  PubMed  Google Scholar 

  9. Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21:1856–1863

    Article  PubMed  Google Scholar 

  10. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305

    Article  PubMed  Google Scholar 

  11. Wolff J (1892) The principle of transformation of bone. A Hirschwald, Berlin

    Google Scholar 

  12. Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, Fuchs RK (2014) Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A 111:5337–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang G, Regatte RR, Schweitzer ME (2009) Olympic fencers: adaptations in cortical and trabecular bone determined by quantitative computed tomography. Osteoporos Int 20:779–785

    Article  CAS  PubMed  Google Scholar 

  14. Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31

    Article  CAS  PubMed  Google Scholar 

  15. Karlsson MK, Linden C, Karlsson C, Johnell O, Obrant K, Seeman E (2000) Exercise during growth and bone mineral density and fractures in old age. Lancet 355:469–470

    Article  CAS  PubMed  Google Scholar 

  16. Nilsson M, Ohlsson C, Mellstrom D, Lorentzon M (2013) Sport-specific association between exercise loading and the density, geometry, and microstructure of weight-bearing bone in young adult men. Osteoporos Int 24:1613–1622

    Article  CAS  PubMed  Google Scholar 

  17. Nilsson M, Sundh D, Ohlsson C, Karlsson M, Mellstrom D, Lorentzon M (2014) Exercise during growth and young adulthood is independently associated with cortical bone size and strength in old Swedish men. J Bone Miner Res 29:1795–1804

    Article  PubMed  Google Scholar 

  18. Ruff CB (2005) Mechanical determinants of bone form: insights from skeletal remains. J Musculoskelet Nueronal Interact 5:202–212

    CAS  Google Scholar 

  19. Perréard Lopreno GES (2003) Une démarche actualiste en paléoanthropologie: la collection de squelettes de référence. In: Besse M, Stahl Gretsch LI, Curdy P (eds) ConstellaSion: hommage à Alain Gallay, vol 95. Cahiers d’archéologie romande, Lausanne, pp 463–472

    Google Scholar 

  20. Gemmerich I (1999) Création d'une collection anthropologique de référence et application des caractères discrets dans le cas de généalogies connues. Geneva, p 277

  21. Perréard Lopreno G (2007) Adaptation structurelle des os du membre supérieur et de la clavicule à l’activité : analyse de l’asymétrie des propriétés géométriques de sections transverses et de mesures linéaires dans une population identifiée (collection SIMON). Université de Genève (PhD, archives ouvertes)

  22. Durosier C, van Lierop A, Ferrari S, Chevalley T, Papapoulos S, Rizzoli R (2013) Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J Clin Endocrinol Metab 98:3873–3883

    Article  CAS  PubMed  Google Scholar 

  23. Bonnet N, Biver E, Durosier C, Chevalley T, Rizzoli R, Ferrari S (2015) Additive genetic effects on circulating periostin contribute to the heritability of bone microstructure. J Clin Endocrinol Metab 100:E1014–E1021

    Article  CAS  PubMed  Google Scholar 

  24. Chevalley T, Bonjour JP, van Rietbergen B, Rizzoli R, Ferrari S (2012) Fractures in healthy females followed from childhood to early adulthood are associated with later menarcheal age and with impaired bone microstructure at peak bone mass. J Clin Endocrinol Metab 97:4174–4181

    Article  CAS  PubMed  Google Scholar 

  25. Silman AJ, O'Neill TW, Cooper C, Kanis J, Felsenberg D (1997) Influence of physical activity on vertebral deformity in men and women: results from the European vertebral osteoporosis study. J Bone Miner Res 12:813–819

    Article  CAS  PubMed  Google Scholar 

  26. Perréard Lopreno G, Alves Cardoso F, Assis S, Milella M, Speith N (2013) Categorization of occupation in documented skeletal collections: its relevance for the interpretation of activity-related osseous changes. Int J Osteoarchaeol 23:175–185

    Article  Google Scholar 

  27. Kontulainen SA, Johnston JD, Liu D, Leung C, Oxland TR, McKay HA (2008) Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis. J Musculoskelet Nueronal Interact 8:401–409

    CAS  Google Scholar 

  28. Weatherholt AM, Avin KG, Hurd AL, Cox JL, Marberry ST, Santoni BG, Warden SJ (2014) Peripheral quantitative computed tomography predicts humeral diaphysis torsional mechanical properties with good short-term precision. J Clin Densitom. doi:10.1016/j.jocd.2014.10.002

    PubMed  PubMed Central  Google Scholar 

  29. Ruff CB (2000) Body size, body shape, and long bone strength in modern humans. J Hum Evol 38:269–290

    Article  CAS  PubMed  Google Scholar 

  30. Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515

    Article  PubMed  Google Scholar 

  31. Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842–848

    Article  CAS  PubMed  Google Scholar 

  32. Shaw CN (2011) Is 'hand preference' coded in the hominin skeleton? an in-vivo study of bilateral morphological variation. J Hum Evol 61:480–487

    Article  PubMed  Google Scholar 

  33. Mays S, Steele J, Ford M (1999) Directional asymmetry in the human clavicle. Int J Osteoarchaeol 9:18–28

    Article  Google Scholar 

  34. Steele J, Mays S (1995) Handedness and directional asymmetry in the long bones of the human upper limb. Int J Osteoarchaeol 5:39–49

    Article  Google Scholar 

  35. Seeman E (2013) Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J Gerontol A Biol Sci Med Sci 68:1218–1225

    Article  PubMed  Google Scholar 

  36. Burr DB, Ruff CB, Johnson C (1989) Structural adaptations of the femur and humerus to arboreal and terrestrial environments in three species of macaque. Am J Phys Anthropol 79:357–367

    Article  CAS  PubMed  Google Scholar 

  37. Maggiano IS, Schultz M, Kierdorf H, Sosa TS, Maggiano CM, Tiesler Blos V (2008) Cross-sectional analysis of long bones, occupational activities and long-distance trade of the classic Maya from Xcambo—archaeological and osteological evidence. Am J Phys Anthropol 136:470–477

    Article  PubMed  Google Scholar 

  38. Ogilvie MD, Hilton CE (2011) Cross-sectional geometry in the humeri of foragers and farmers from the prehispanic American Southwest: exploring patterns in the sexual division of labor. Am J Phys Anthropol 144:11–21

    Article  PubMed  Google Scholar 

  39. Rhodes JA, Knusel CJ (2005) Activity-related skeletal change in medieval humeri: cross-sectional and architectural alterations. Am J Phys Anthropol 128:536–546

    Article  PubMed  Google Scholar 

  40. Mays S (2001) Effects of age and occupation on cortical bone in a group of 18th-19th century British men. Am J Phys Anthropol 116:34–44

    Article  CAS  PubMed  Google Scholar 

  41. Schaffler MB, Kennedy OD (2012) Osteocyte signaling in bone. Curr Osteoporos Rep 10:118–125

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ, Ferrari SL (2009) The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284:35939–35950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rizzoli R, Stevenson JC, Bauer JM, van Loon LJ, Walrand S, Kanis JA, Cooper C, Brandi ML, Diez-Perez A, Reginster JY (2014) The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas 79:122–132

    Article  CAS  PubMed  Google Scholar 

  44. Perneger TV (1998) What's wrong with Bonferroni adjustments. BMJ 316:1236–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ms C. Durosier for the management of the cohort GERICO, Ms F. Merminod, C. Genet, M.-A. Schaad, and A. Sigaud, for the management of GERICO cohort participants, Mr P Bregis for CT scanning of skeletal humeri and radii, Mr G. Conicella for HRpQCT measurements, and Ms R. Sudan for manuscript editing. We thank the Swiss National Science Foundation (subside n° FNS 31–53681.98), the Archaeology Department of the Canton of Vaud, the Geneva University Hospitals and Faculty of Medicine Clinical Research Centre and the BNP Paribas Foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Biver.

Ethics declarations

Conflict of interest

Dr. van Rietbergen reports personal fees from Scanco Medical AG, outside the submitted work; Emmanuel Biver, Geneviève Perréard Lopreno, Magaly Hars, Jean-Paul Vallée, Serge Ferrari, Marie Besse, and René Rizzoli declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 21kb)

Table S2

(DOCX 20kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biver, E., Perréard Lopreno, G., Hars, M. et al. Occupation-dependent loading increases bone strength in men. Osteoporos Int 27, 1169–1179 (2016). https://doi.org/10.1007/s00198-015-3409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3409-2

Keywords

Navigation