Skip to main content

Advertisement

Log in

Low serum 25-hydroxyvitamin D is associated with increased risk of stress fracture during Royal Marine recruit training

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The aim of this study was to investigate vitamin D status and stress fracture risk during Royal Marine military training. Poor vitamin D status was associated with an increased risk of stress fracture. Vitamin D supplementation may help to reduce stress fracture risk in male military recruits with low vitamin D status.

Introduction

Stress fracture is a common overuse injury in military recruits, including Royal Marine (RM) training in the UK. RM training is recognised as one of the most arduous basic training programmes in the world. Associations have been reported between serum 25-hydroxyvitamin D (25(OH)D) and risk of stress fracture, but the threshold of 25(OH)D for this effect remains unclear. We aimed to determine if serum 25(OH)D concentrations were associated with stress fracture risk during RM training.

Methods

We prospectively followed 1082 RM recruits (males aged 16–32 years) through the 32-week RM training programme. Troops started training between September and July. Height, body weight and aerobic fitness were assessed at week 1. Venous blood samples were drawn at weeks 1, 15 and 32. Serum samples were analysed for 25(OH)D and parathyroid hormone (PTH).

Results

Seventy-eight recruits (7.2 %) suffered a total of 92 stress fractures. Recruits with a baseline serum 25(OH)D concentration below 50 nmol L−1 had a higher incidence of stress fracture than recruits with 25(OH)D concentration above this threshold (χ2 (1) = 3.564, p = 0.042; odds ratio 1.6 (95 % confidence interval (CI) 1.0–2.6)). Baseline serum 25(OH)D varied from 47.0 ± 23.7 nmol L−1 in February, to 97.3 ± 24.6 nmol L−1 in July (overall mean 69.2 ± 29.2 nmol L−1, n = 1016). There were weak inverse correlations between serum 25(OH)D and PTH concentrations at week 15 (r = −0.209, p < 0.001) and week 32 (r = −0.214, p < 0.001), but not at baseline.

Conclusion

Baseline serum 25(OH)D concentration below 50 nmol L−1 was associated with an increased risk of stress fracture. Further studies into the effects of vitamin D supplementation on stress fracture risk are certainly warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pepper M, Akuthota V, McCarty EC (2006) The pathophysiology of stress fractures. Clin Sports Med 25(1):1–16, vii

    Article  PubMed  Google Scholar 

  2. Burr DB (2011) Why bones bend but don't break. J Musculoskelet Neuronal Interact 11(4):270–285

    PubMed  CAS  Google Scholar 

  3. Wright LA, Demicheli V, Gillespie WJ, Jefferson TO (1998) Morbidity surveillance in the British Army--the first 12 months. J R Army Med Corps 144(1):11–17

    Article  PubMed  CAS  Google Scholar 

  4. Institute of Medicine (2011) Dietary reference intakes for calcium and vitamin D. Institute of Medicine, Washington

    Google Scholar 

  5. DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(6 Suppl):1689S–1696S

    PubMed  CAS  Google Scholar 

  6. Kauppi M, Impivaara O, Maki J, Heliovaara M, Marniemi J, Montonen J, Jula A (2009) Vitamin D status and common risk factors for bone fragility as determinants of quantitative ultrasound variables in a nationally representative population sample. Bone 45(1):119–124

    Article  PubMed  CAS  Google Scholar 

  7. Cheng S, Tylavsky F, Kroger H, Karkkainen M, Lyytikainen A, Koistinen A, Mahonen A, Alen M, Halleen J, Vaananen K, Lamberg-Allardt C (2003) Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 78(3):485–492

    PubMed  CAS  Google Scholar 

  8. Valimaki VV, Alfthan H, Lehmuskallio E, Loyttyniemi E, Sahi T, Stenman UH, Suominen H, Valimaki MJ (2004) Vitamin D status as a determinant of peak bone mass in young Finnish men. J Clin Endocrinol Metab 89(1):76–80

    Article  PubMed  CAS  Google Scholar 

  9. Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B (2005) Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 293(18):2257–2264

    Article  PubMed  CAS  Google Scholar 

  10. Beck TJ, Ruff CB, Mourtada FA, Shaffer RA, Maxwell-Williams K, Kao GL, Sartoris DJ, Brodine S (1996) Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits. J Bone Miner Res 11(5):645–653. doi:10.1002/jbmr.5650110512

    Article  PubMed  CAS  Google Scholar 

  11. Pouilles JM, Bernard J, Tremollieres F, Louvet JP, Ribot C (1989) Femoral bone density in young male adults with stress fractures. Bone 10(2):105–108

    Article  PubMed  CAS  Google Scholar 

  12. Valimaki VV, Alfthan H, Lehmuskallio E, Loyttyniemi E, Sahi T, Suominen H, Valimaki MJ (2005) Risk factors for clinical stress fractures in male military recruits: a prospective cohort study. Bone 37(2):267–273

    Article  PubMed  Google Scholar 

  13. Davey T, Lanham-New SA, Allsopp AJ, Taylor P, Cooper C, Fallowfield JL (2012) Lumbar spine and hip bone mineral density are important risk factors for stress fracture in Royal Marine recruits. Osteoporos Int 23(Suppl 5):S521–S611

    Google Scholar 

  14. Givon U, Friedman E, Reiner A, Vered I, Finestone A, Shemer J (2000) Stress fractures in the Israeli defense forces from 1995 to 1996. Clin Orthop Relat Res 373:227–232

    Article  PubMed  Google Scholar 

  15. Burgi AA, Gorham ED, Garland CF, Mohr SB, Garland FC, Zeng K, Thompson K, Lappe JM (2011) High serum 25-hydroxyvitamin D is associated with a low incidence of stress fractures. J Bone Miner Res 26(10):2371–2377

    Article  PubMed  CAS  Google Scholar 

  16. Ruohola JP, Laaksi I, Ylikomi T, Haataja R, Mattila VM, Sahi T, Tuohimaa P, Pihlajamaki H (2006) Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res 21(9):1483–1488

    Article  PubMed  CAS  Google Scholar 

  17. Cosman F, Ruffing J, Zion M, Uhorchak J, Ralston S, Tendy S, McGuigan FE, Lindsay R, Nieves J (2013) Determinants of stress fracture risk in United States Military Academy cadets. Bone 55(2):359–366. doi:10.1016/j.bone.2013.04.011

    Article  PubMed  Google Scholar 

  18. Lappe JM, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K (2008) Calcium and vitamin D supplementation decreases incidence of stress fractures in female Navy recruits. J Bone Miner Res 23(5):741–749

    Article  PubMed  CAS  Google Scholar 

  19. Harkness L, Cromer B (2005) Low levels of 25-hydroxy vitamin D are associated with elevated parathyroid hormone in healthy adolescent females. Osteoporos Int 16(1):109–113

    Article  PubMed  CAS  Google Scholar 

  20. Krall EA, Sahyoun N, Tannenbaum S, Dallal GE, Dawson-Hughes B (1989) Effect of vitamin D intake on seasonal variations in parathyroid hormone secretion in postmenopausal women. N Engl J Med 321(26):1777–1783

    Article  PubMed  CAS  Google Scholar 

  21. Andersen NE, Karl JP, Cable SJ, Williams KW, Rood JC, Young AJ, Lieberman HR, McClung JP (2010) Vitamin D status in female military personnel during combat training. J Int Soc Sports Nutr 7:38. doi:10.1186/1550-2783-7-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Evans RK, Antczak AJ, Lester M, Yanovich R, Israeli E, Moran DS (2008) Effects of a 4-month recruit training program on markers of bone metabolism. Med Sci Sports Exerc 40(11 Suppl):S660–S670

    Article  PubMed  CAS  Google Scholar 

  23. Lutz LJ, Karl JP, Rood JC, Cable SJ, Williams KW, Young AJ, McClung JP (2012) Vitamin D status, dietary intake, and bone turnover in female Soldiers during military training: a longitudinal study. J Int Soc Sports Nutr 9(1):38. doi:10.1186/1550-2783-9-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ross RA, Allsopp AJ (2002) Stress fractures in Royal Marines recruits. Mil Med 167(7):560–565

    PubMed  Google Scholar 

  25. Moran DS, Heled Y, Arbel Y, Israeli E, Finestone A, Evans RK, Yanovich R (2012) Dietary intake and stress fractures among elite male combat recruits. J Int Soc Sports Nutr 9(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK (2000) Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone 27(3):437–444

    Article  PubMed  CAS  Google Scholar 

  27. Jones BH, Bovee MW, Harris JM 3rd, Cowan DN (1993) Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am J Sports Med 21(5):705–710

    Article  PubMed  CAS  Google Scholar 

  28. Knapik J, Montain SJ, McGraw S, Grier T, Ely M, Jones BH (2012) Stress fracture risk factors in basic combat training. Int J Sports Med 33(11):940–946. doi:10.1055/s-0032-1311583

    Article  PubMed  CAS  Google Scholar 

  29. Zittermann A (2003) Vitamin D in preventive medicine: are we ignoring the evidence? Br J Nutr 89(5):552–572

    Article  PubMed  CAS  Google Scholar 

  30. Committee on Medical Aspects of Food Policy (1998) Report on health and social subjects. No 49. Nutrition and bone health: with particular reference to calcium and vitamin D. HMSO, London

    Google Scholar 

  31. Swan G (2004) Findings from the latest National Diet and Nutrition Survey. Proc Nutr Soc 63(4):505–512

    Article  PubMed  CAS  Google Scholar 

  32. Guillemant J, Le HT, Maria A, Allemandou A, Peres G, Guillemant S (2001) Wintertime vitamin D deficiency in male adolescents: effect on parathyroid function and response to vitamin D3 supplements. Osteoporos Int 12(10):875–879

    Article  PubMed  CAS  Google Scholar 

  33. Chapuy MC, Preziosi P, Maamer M, Arnaud S, Galan P, Hercberg S, Meunier PJ (1997) Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 7(5):439–443

    Article  PubMed  CAS  Google Scholar 

  34. Vieth R, Ladak Y, Walfish PG (2003) Age-related changes in the 25-hydroxyvitamin D versus parathyroid hormone relationship suggest a different reason why older adults require more vitamin D. J Clin Endocrinol Metab 88(1):185–191

    Article  PubMed  CAS  Google Scholar 

  35. Shaffer RA, Brodine SK, Almeida SA, Williams KM, Ronaghy S (1999) Use of simple measures of physical activity to predict stress fractures in young men undergoing a rigorous physical training program. Am J Epidemiol 149(3):236–242

    Article  PubMed  CAS  Google Scholar 

  36. Giladi M, Milgrom C, Simkin A, Danon Y (1991) Stress fractures. Identifiable risk factors. Am J Sports Med 19(6):647–652

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank colleagues at the Commando Training Centre Royal Marines, Lympstone, Devon, UK, for their cooperation and support with this study. This work was funded by the UK Ministry of Defence.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Davey.

Additional information

TD was selected for a Young Investigator Travel Award at the 15th Workshop on Vitamin D, Houston, Texas, USA, 19–22 June 2012 for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davey, T., Lanham-New, S.A., Shaw, A.M. et al. Low serum 25-hydroxyvitamin D is associated with increased risk of stress fracture during Royal Marine recruit training. Osteoporos Int 27, 171–179 (2016). https://doi.org/10.1007/s00198-015-3228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3228-5

Keywords

Navigation