Exercise training, creatine supplementation, and bone health in ovariectomized rats



Evidence suggests that creatine may have some beneficial effects on bone. The study aimed to investigate the effects of exercise alone or combined with creatine on bone health in ovariectomized rats. Findings show that exercise, but not creatine, has an important role in improving bone health.


The aim of this study was to investigate the effects of exercise training alone or combined with creatine supplementation on bone health parameters in ovariectomized rats.


Wistar rats were randomly allocated into one of five groups: (i) sham-operated, (ii) ovariectomized non-trained placebo-supplemented, (iii) ovariectomized non-trained creatine-supplemented, (iv) ovariectomized exercise-trained placebo-supplemented, and (v) ovariectomized exercise-trained creatine-supplemented. Downhill running training and/or creatine supplementation (300 mg/kg body weight) were administered for 12 weeks. Bone mineral content (BMC), bone mineral density (BMD), and biomechanical and histomorphometric parameters were assessed.


No interaction effects were observed for BMC and BMD at whole body, femur, and lumbar spine (p > 0.05). Importantly, a main effect of training was detected for whole body BMC and BMD (p = 0.003 and p < 0.001, respectively), femoral BMC and BMD (p = 0.005 and p < 0.001, respectively), and lumbar spine BMC and BMD (p < 0.001 and p < 0.001, respectively), suggesting that the trained animals had higher bone mass, irrespective of creatine supplementation. Main effects of training were also observed for maximal load (p < 0.001), stiffness (p < 0.001), and toughness (p = 0.046), indicating beneficial effects of exercise training on bone strength. Neither a main effect of supplementation nor an interaction effect was detected for biomechanical parameters (p > 0.05). No main or interaction effects were observed for any of the histomorphometric parameters evaluated (p > 0.05).


Exercise training, but not creatine supplementation, attenuated ovariectomy-induced bone loss in this rat model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 3


  1. 1.

    Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    PubMed Central  CAS  PubMed  Google Scholar 

  2. 2.

    Harris RC, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 83:367–374

    CAS  Google Scholar 

  3. 3.

    Gualano B, Roschel H, Lancha-Jr AH, Brightbill CE, Rawson ES (2012) In sickness and in health: the widespread application of creatine supplementation. Amino Acids 43:519–529. doi:10.1007/s00726-011-1132-7

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Gerber I, ap Gwynn I, Alini M, Wallimann T (2005) Stimulatory effects of creatine on metabolic activity, differentiation and mineralization of primary osteoblast-like cells in monolayer and micromass cell cultures. Eur Cell Mater 10:8–22

    CAS  PubMed  Google Scholar 

  5. 5.

    Chang EJ, Ha J, Oerlemans F, Lee YJ, Lee SW, Ryu J, Kim HJ, Lee Y, Kim HM, Choi JY, Kim JY, Shin CS, Pak YK, Tanaka S, Wieringa B, Lee ZH, Kim HH (2008) Brain-type creatine kinase has a crucial role in osteoclast-mediated bone resorption. Nat Med 14:966–972. doi:10.1038/nm.1860

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Antolic A, Roy BD, Tarnopolsky MA, Zernicke RF, Wohl GR, Shaughnessy SG, Bourgeois JM (2007) Creatine monohydrate increases bone mineral density in young Sprague-Dawley rats. Med Sci Sports Exerc 39:816–820. doi:10.1249/mss.0b013e318031fac4

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Louis M, Lebacq J, Poortmans JR, Belpaire-Dethiou MC, Devogelaer JP, Van Hecke P, Goubel F, Francaux M (2003) Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve 27:604–610. doi:10.1002/mus.10355

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Candow DG, Little JP, Chilibeck PD, Abeysekara S, Zello GA, Kazachkov M, Cornish SM, Yu PH (2008) Low-dose creatine combined with protein during resistance training in older men. Med Sci Sports Exerc 40:1645–1652. doi:10.1249/MSS.0b013e318176b310

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Chilibeck PD, Candow DG, Landeryou T, Kaviani M, Paus-Jenssen L (2014) Effects of creatine and resistance training on bone health in postmenopausal women. Med Sci Sports Exerc. doi:10.1249/MSS.0000000000000571

    PubMed  Google Scholar 

  10. 10.

    Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57:344–358

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Iwamoto J, Takeda T, Sato Y (2005) Effect of treadmill exercise on bone mass in female rats. Exp Anim 54:1–6. doi:10.1538/expanim.54.1

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    de Souza RA, Xavier M, da Silva FF, de Souza MT, Tosato MG, Martin AA, Castilho JC, Ribeiro W, Silveira L Jr (2011) Influence of creatine supplementation on bone quality in the ovariectomized rat model: an FT-Raman spectroscopy study. Lasers Med Sci 27:487–495. doi:10.1007/s10103-011-0976-0

    Article  PubMed  Google Scholar 

  13. 13.

    Chilibeck PD, Chrusch MJ, Chad KE, Shawn Davison K, Burke DG (2005) Creatine monohydrate and resistance training increase bone mineral content and density in older men. J Nutr Health Aging 9:352–353

    CAS  PubMed  Google Scholar 

  14. 14.

    Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Egermann M, Goldhahn J, Schneider E (2005) Animal models for fracture treatment in osteoporosis. Osteoporos Int 16(Suppl 2):S129–S138. doi:10.1007/s00198-005-1859-7

    Article  PubMed  Google Scholar 

  17. 17.

    Hamann N, Kohler T, Muller R, Bruggemann GP, Niehoff A (2012) The effect of level and downhill running on cortical and trabecular bone in growing rats. Calcif Tissue Int 90:429–437. doi:10.1007/s00223-012-9593-6

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Vicente WS, dos Reis LM, Graciolli RG, Graciolli FG, Dominguez WV, Wang CC, Fonseca TL, Velosa AP, Roschel H, Teodoro WR, Gualano B, Jorgetti V (2013) Bone plasticity in response to exercise is sex-dependent in rats. PLoS One 8:e64725. doi:10.1371/journal.pone.0064725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. 19.

    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17. doi:10.1002/jbmr.1805

    Article  PubMed Central  PubMed  Google Scholar 

  20. 20.

    Sewell DA, Harris RC (2002) Effect of creatine supplementation in the thoroughbred horse. Equine Vet J 18:239–242

    Google Scholar 

  21. 21.

    Tarnopolsky MA, Bourgeois JM, Snow R, Keys S, Roy BD, Kwiecien JM, Turnbull J (2003) Histological assessment of intermediate- and long-term creatine monohydrate supplementation in mice and rats. Am J Physiol Regul Integr Comp Physiol 285:R762–R769. doi:10.1152/ajpregu.00270.2003

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Sjovall K, Hansson LI (1971) The pattern of ATP-creatine phosphotransferase activity in growing long bones of new-born mice. Histochem J 3:143–150

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Somjen D, Kaye AM, Rodan GA, Binderman I (1985) Regulation of creatine kinase activity in rat osteogenic sarcoma cell clones by parathyroid hormone, prostaglandin E2, and vitamin D metabolites. Calcif Tissue Int 37:635–638

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Wallimann T, Hemmer W (1994) Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133–134:193–220

    Article  PubMed  Google Scholar 

  25. 25.

    Granstrom G (1986) Isoenzyme changes during rat facial development. Scand J Dent Res 94:1–14

    CAS  PubMed  Google Scholar 

  26. 26.

    Funanage VL, Carango P, Shapiro IM, Tokuoka T, Tuan RS (1992) Creatine kinase activity is required for mineral deposition and matrix synthesis in endochondral growth cartilage. Bone Miner 17:228–236

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Rajpurohit R, Koch CJ, Tao Z, Teixeira CM, Shapiro IM (1996) Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism. J Cell Physiol 168:424–432. doi:10.1002/(SICI)1097-4652(199608)168:2<424::AID-JCP21>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Pollesello P, de Bernard B, Grandolfo M, Paoletti S, Vittur F, Kvam BJ (1991) Energy state of chondrocytes assessed by 31P-NMR studies of preosseous cartilage. Biochem Biophys Res Commun 180:216–222

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Kvam BJ, Pollesello P, Vittur F, Paoletti S (1992) 31P NMR studies of resting zone cartilage from growth plate. Magn Reson Med 25:355–361

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Shapiro IM, Debolt K, Funanage VL, Smith SM, Tuan RS (1992) Developmental regulation of creatine kinase activity in cells of the epiphyseal growth cartilage. J Bone Miner Res 7:493–500. doi:10.1002/jbmr.5650070505

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Hobson GM, Funanage VL, Elsemore J, Yagami M, Rajpurohit R, Perriard JC, Hickok NJ, Shapiro IM, Tuan RS (1999) Developmental expression of creatine kinase isoenzymes in chicken growth cartilage. J Bone Miner Res 14:747–756. doi:10.1359/jbmr.1999.14.5.747

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Tarnopolsky MA, Mahoney DJ, Vajsar J, Rodriguez C, Doherty TJ, Roy BD, Biggar D (2004) Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology 62:1771–1777

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Gualano B, Macedo AR, Alves CR, Roschel H, Benatti FB, Takayama L, de Sa Pinto AL, Lima FR, Pereira RM (2014) Creatine supplementation and resistance training in vulnerable older women: a randomized double-blind placebo-controlled clinical trial. Exp Gerontol 53:7–15. doi:10.1016/j.exger.2014.02.003

    Article  CAS  PubMed  Google Scholar 

Download references


We would like to thank Probiotica for donating the creatine supplements. This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2012/04695-0).

Conflicts of interest


Author information



Corresponding author

Correspondence to B. Gualano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Pictorial view of the three-point bending protocol (GIF 675 kb)

Online Resource 2

Body weight throughout the study (GIF 25 kb)

Online Resource 3

Chow consumption throughout the study (GIF 15 kb)

High Resolution Image (TIFF 83902 kb)

High Resolution Image (TIFF 849 kb)

High Resolution Image (TIFF 502 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murai, I.H., Roschel, H., Pabis, L.V.S. et al. Exercise training, creatine supplementation, and bone health in ovariectomized rats. Osteoporos Int 26, 1395–1404 (2015). https://doi.org/10.1007/s00198-014-3017-6

Download citation


  • Creatine kinase
  • Downhill running
  • Exercise
  • Osteoporosis
  • Phosphorylcreatine