The effect of supplementation with alkaline potassium salts on bone metabolism: a meta-analysis



The role of acid–base metabolism in bone health is controversial. In this meta-analysis, potassium bicarbonate and potassium citrate lowered urinary calcium and acid excretion and reduced the excretion of the bone resorption marker NTX. These salts may thus be beneficial to bone health by conserving bone mineral.


The role of acid–base homeostasis as a determinant of bone health and the contribution of supplemental alkali in promoting skeletal integrity remain a subject of debate. The objective of this study was, therefore, to conduct a meta-analysis to assess the effects of supplemental potassium bicarbonate (KHCO3) and potassium citrate (KCitr) on urinary calcium and acid excretion, markers of bone turnover and bone mineral density (BMD) and to compare their effects with that of potassium chloride (KCl).


A total of 14 studies of the effect of alkaline potassium salts on calcium metabolism and bone health, identified by a systematic literature search, were analysed with Review Manager (Version 5; The Cochrane Collaboration) using a random-effects model. Authors were contacted to provide missing data as required. Results are presented as the standardised (SMD) or unstandardized mean difference (MD) (95 % confidence intervals).


Urinary calcium excretion was lowered by intervention with both KHCO3 (P = 0.04) and KCitr (P = 0.01), as was net acid excretion (NAE) (P = 0.002 for KHCO3 and P = 0.0008 for KCitr). Both salts significantly lowered the bone resorption marker NTX (P < 0.00001). There was no effect on bone formation markers or BMD. KHCO3 and KCitr lowered calcium excretion to a greater extent than did KCl.


This meta-analysis confirms that supplementation with alkaline potassium salts leads to significant reduction in renal calcium excretion and acid excretion, compatible with the concept of increased buffering of hydrogen ions by raised circulating bicarbonate. The observed reduction in bone resorption indicates a potential benefit to bone health

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Remer T, Manz F (1995) Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc 95(7):791–797. doi:10.1016/s0002-8223(95)00219-7

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Berkemeyer S, Vormann J, Guenther ALB, Rylander R, Frassetto LA, Remer T (2008) Renal net acid excretion capacity is comparable in prepubescence, adolescence, and young adulthood but falls with aging. J Am Geriatr Soc 56(8):1442–1448. doi:10.1111/j.1532-5415.2008.01799.x

    Article  PubMed  Google Scholar 

  3. 3.

    Frassetto LA, Morris RC, Sebastian A (1996) Effect of age on blood acid–base composition in adult humans: role of age-related renal functional decline. Am J Physiol Ren Physiol 271(6):F1114–F1122

    CAS  Google Scholar 

  4. 4.

    Bushinsky DA (1994) Acidosis and bone. Miner Electrolyte Metab 20(1–2):40–52

    CAS  PubMed  Google Scholar 

  5. 5.

    Arnett TR, Spowage M (1996) Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone 18(3):277–279. doi:10.1016/8756-3282(95)00486-6

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Muzylak M, Arnett TR, Price JS, Horton MA (2007) The in vitro effect of pH on osteoclasts and bone resorption in the cat: implications for the pathogenesis of FORL. J Cell Physiol 213(1):144–150. doi:10.1002/jcp.21103

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Krieger NS, Sessler NE, Bushinsky DA (1992) Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Am J Physiol 262(3):F442–F448

    CAS  PubMed  Google Scholar 

  8. 8.

    Bushinsky DA (1995) Stimulated osteoclastic and suppressed osteoblastic activity in metabolic but not respiratory acidosis. Am J Physiol Cell Physiol 268(1):C80–C88

    CAS  Google Scholar 

  9. 9.

    Arnett TR (2008) Extracellular pH regulates bone cell function. J Nutr 138(2):415S–418S

    CAS  PubMed  Google Scholar 

  10. 10.

    Higgins JPT AD, Stern JAC (2011) Chapter 8: assessing risk of bias in included studies. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration

  11. 11.

    Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting times for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269

  12. 12.

    Buehlmeier J, Frings-Meuthen P, Remer T, Maser-Gluth C, Stehle P, Biolo G, Heer M (2012) Alkaline salts to counteract bone resorption and protein wasting induced by high salt intake: results of a randomized controlled trial. J Clin Endocrinol Metab 97(12):4789–4797. doi:10.1210/jc.2012-2857

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Ceglia L, Harris SS, Abrams SA, Rasmussen HM, Dallal GE, Dawson-Hughes B (2009) Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J Clin Endocrinol Metab 94(2):645–653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. 14.

    Dawson-Hughes B, Harris SS, Palermo NJ, Castaneda-Sceppa C, Rasmussen HM, Dallal GE (2009) Treatment with potassium bicarbonate lowers calcium excretion and bone resorption in older men and women. J Clin Endocrinol Metab 94(1):96–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. 15.

    Frassetto L, Morris RC, Sebastian A (2005) Long-term persistence of the urine calcium-lowering effect of potassium bicarbonate in postmenopausal women. J Clin Endocrinol Metab 90(2):831–834. doi:10.1210/jc.2004-1350

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    He FJ, Marciniak M, Carney C, Markandu ND, Anand V, Fraser WD, Dalton RN, Kaski JC, MacGregor GA (2010) Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives. Hypertension 55(3):681–688. doi:10.1161/hypertensionaha.109.147488

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Lemann J, Gray RW, Pleuss JA (1989) Potassium bicarbonate, but not sodium bicarbonate, reduces urinary calcium excretion and improves calcium balance in healthy men. Kidney Int 35(2):688–695. doi:10.1038/ki.1989.40

    Article  PubMed  Google Scholar 

  18. 18.

    Sebastian A, Morris RC (1994) Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 330:1176–1181. doi:10.1056/nejm199407283310421

    Article  Google Scholar 

  19. 19.

    Macdonald HM, Black AJ, Aucott L, Duthie G, Duthie S, Sandison R, Hardcastle AC, New SAL, Fraser WD, Reid DM (2008) Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr 88(2):465–474

    CAS  PubMed  Google Scholar 

  20. 20.

    Karp HJ, Ketola ME, Lamberg-Allardt CJE (2009) Acute effects of calcium carbonate, calcium citrate and potassium citrate on markers of calcium and bone metabolism in young women. Br J Nutr 102(9):1341–1347

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Jehle S, Hulter HN, Krapf R (2013) Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab 98(1):207–217. doi:10.1210/jc.2012-3099

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Moseley KF, Weaver CM, Appel L, Sebastian A, Sellmeyer DE (2013) Potassium citrate supplementation results in sustained improvement in calcium balance in older men and women. J Bone Miner Res 28(3):497–504. doi:10.1002/jbmr.1764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. 23.

    Sakhaee K, Nicar M, Hill K, Pak CYC (1983) Contrasting effects of potassium citrate and sodium citrate therapies on urinary chemistries and crystallization of stone-forming salts. Kidney Int 24(3):348–352. doi:10.1038/ki.1983.165

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Sakhaee K, Maalouf NM, Abrams SA, Pak CYC (2005) Effects of potassium alkali and calcium supplementation on bone turnover in postmenopausal women. J Clin Endocrinol Metab 90(6):3528–3533. doi:10.1210/jc.2004-2451

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Sellmeyer DE, Schloetter M, Sebastian A (2002) Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab 87(5):2008–2012. doi:10.1210/jc.87.5.2008

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Frassetto LA, Nash E, Morris RC, Sebastian A (2000) Comparative effects of potassium chloride and bicarbonate on thiazide-induced reduction in urinary calcium excretion. Kidney Int 58(2):748–752. doi:10.1046/j.1523-1755.2000.00221.x

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Jehle S, Zanetti A, Muser J, Hulter HN, Krapf R (2006) Partial neutralization of the acidogenic western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J Am Soc Nephrol 17(11):3213–3222. doi:10.1681/asn.2006030233

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Rafferty K, Heaney RP (2008) Nutrient effects on the calcium economy: emphasizing the potassium controversy. J Nutr 138(1):166S–171S

    CAS  PubMed  Google Scholar 

  29. 29.

    Frassetto LA, Lanham-New SA, Macdonald HM, Remer T, Sebastian A, Tucker KL, Tylavsky FA (2007) Standardizing terminology for estimating the diet-dependent net acid load to the metabolic system. J Nutr 137(6):1491–1492

    CAS  PubMed  Google Scholar 

  30. 30.

    Maurer M, Muser J, Riesen WF, Hulter HN, Krapf R (2002) Alkali-induced neutralization of the acidogenic western diet inhibits bone resorption independent of potassium intake and reduces cortisol secretion in humans. J Am Soc Nephrol 13:387A–387A

    Google Scholar 

  31. 31.

    Vezzoli G, Soldati L, Arcidiacono T, Terranegra A, Biasion R, Russo CR, Lauretani F, Bandinelli S, Bartali B, Cherubini A, Cusi D, Ferrucci L (2005) Urinary calcium is a determinant of bone mineral density in elderly men participating in the InCHIANTI study. Kidney Int 67(5):2006–2014. doi:10.1111/j.1523-1755.2005.00302.x

    Article  PubMed  Google Scholar 

  32. 32.

    New SA, MacDonald HM, Campbell MK, Martin JC, Garton MJ, Robins SP, Reid DM (2004) Lower estimates of net endogenous noncarbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women. Am J Clin Nutr 79(1):131–138

    CAS  PubMed  Google Scholar 

  33. 33.

    Shi L, Libuda L, Schoenau E, Frassetto L, Remer T (2012) Long term higher urinary calcium excretion within the normal physiologic range predicts impaired bone status of the proximal radius in healthy children with higher potential renal acid load. Bone 50(5):1026–1031. doi:10.1016/j.bone.2012.01.026

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Frassetto LA, Hardcastle AC, Sebastian A, Aucott L, Fraser WD, Reid DM, Macdonald HM (2012) No evidence that the skeletal non-response to potassium alkali supplements in healthy postmenopausal women depends on blood pressure or sodium chloride intake. Eur J Clin Nutr 66(12):1315–1322. doi:10.1038/ejcn.2012.151

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Remer T, Shi L, Alexy U (2011) Potential renal acid load may more strongly affect bone size and mass than volumetric bone mineral density. Bone 48(2):414–415. doi:10.1016/j.bone.2010.09.003

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest


Author information



Corresponding author

Correspondence to H. Lambert.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 361 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lambert, H., Frassetto, L., Moore, J.B. et al. The effect of supplementation with alkaline potassium salts on bone metabolism: a meta-analysis. Osteoporos Int 26, 1311–1318 (2015).

Download citation


  • Alkali
  • Bone mineral density
  • Markers of bone turnover
  • Potassium