Advertisement

Osteoporosis International

, Volume 26, Issue 1, pp 163–171 | Cite as

Associations between serum 25-hydroxyvitamin D and bone mineral density and proximal femur geometry in Koreans: the Korean National Health and Nutrition Examination Survey (KNHANES) 2008–2009

  • S. Hwang
  • H. S. Choi
  • K. M. Kim
  • Y. Rhee
  • S. K. LimEmail author
Original Article

Abstract

Summary

The association between 25-hydroxyvitamin D (25(OH)D) levels and bone mineral density (BMD) and proximal femur bone geometry was examined in the Korean population. A positive relationship between skeletal health and 25(OH)D levels was observed. However, there were no significant differences in skeletal health between the groups with 25(OH)D level of 50–75 nmol/L and greater than 75 nmol/L.

Introduction

Vitamin D plays an important role in calcium and phosphate homeostasis and normal mineralization of bone. However, the optimal level of vitamin D for skeletal health has not been clearly established. We analyzed the associations between serum 25(OH)D and BMD and proximal femur bone geometry and determined the optimal 25(OH)D level.

Methods

This was a cross-sectional study of 10,062 participants (20–95 years, 4,455 men, 5,607 women) in the Fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) conducted from 2008 to 2009. Participants were divided into groups according to 25(OH)D level (<25, 25–50, 50–75, and 75 nmol/L). BMD and proximal femur geometric indices were measured.

Results

The group with 25(OH)D levels of 50–75 nmol/L had greater bone density values, with the exception of the lumbar spine, and also had greater femur neck cortical thickness, cross-sectional area, and cross-sectional moment of inertia, as well as a lesser buckling ratio than the groups with 25(OH)D level of 25–50 nmol/L and less than 25 nmol/L. However, there were no significant differences in BMD and proximal femur geometry properties between the groups with 50–75 nmol/L and greater than 75 nmol/L of 25(OH)D.

Conclusion

The skeletal outcomes, including BMD and proximal femur geometric indices observed in this study, suggest that serum 25(OH)D levels of 50 to <75 nmol/L are optimal for skeletal health.

Keywords

Bone geometry Bone mineral density Population study Vitamin D 

Abbreviations

BMD

Bone mineral density

BR

Buckling ratio

CSA

Cross-sectional area

CSMI

Cross-sectional moment of inertia

CT

Cortical thickness

FN

Femur neck

HSA

Hip structure analysis

IOM

Institute of Medicine

KNHANES

Korean National Health and Nutrition Examination Surveys

NN

Narrow neck

PTH

Parathyroid hormone

RCTs

Randomized controlled trials

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (No. 20110001024) and the Dongguk University Research Fund 2011.

Conflicts of interest

None.

References

  1. 1.
    Rosen CJ (2011) Clinical practice. Vitamin D insufficiency. N Engl J Med 364:248–254PubMedCrossRefGoogle Scholar
  2. 2.
    World Health Organization (WHO) Scientific Group on Prevention and Management of Osteoporosis (2003) Prevention and management of osteoporosis: report of a WHO scientific group. WHO, GenevaGoogle Scholar
  3. 3.
    Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 84:18–28PubMedGoogle Scholar
  4. 4.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281PubMedCrossRefGoogle Scholar
  5. 5.
    Hanley DA, Cranney A, Jones G, Whiting SJ, Leslie WD, Cole DE et al (2010) Vitamin D in adult health and disease: a review and guideline statement from osteoporosis Canada. CMAJ 182:E610–618PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Dawson-Hughes B, Mithal A, Bonjour JP, Boonen S, Burckhardt P, Fuleihan GE et al (2010) IOF position statement: vitamin D recommendations for older adults. Osteoporos Int 21:1151–1154PubMedCrossRefGoogle Scholar
  7. 7.
    Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B (2004) Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med 116:634–639PubMedCrossRefGoogle Scholar
  9. 9.
    Melhus H, Snellman G, Gedeborg R, Byberg L, Berglund L, Mallmin H et al (2010) Plasma 25-hydroxyvitamin D levels and fracture risk in a community-based cohort of elderly men in Sweden. J Clin Endocrinol Metab 95:2637–2645PubMedCrossRefGoogle Scholar
  10. 10.
    Kuchuk NO, Pluijm SM, van Schoor NM, Looman CW, Smit JH, Lips P (2009) Relationships of serum 25-hydroxyvitamin D to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J Clin Endocrinol Metab 94:1244–1250PubMedCrossRefGoogle Scholar
  11. 11.
    Ensrud KE, Taylor BC, Paudel ML, Cauley JA, Cawthon PM, Cummings SR et al (2009) Serum 25-hydroxyvitamin D levels and rate of hip bone loss in older men. J Clin Endocrinol Metab 94:2773–2780PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bischoff-Ferrari HA, Shao A, Dawson-Hughes B, Hathcock J, Giovannucci E, Willett WC (2010) Benefit-risk assessment of vitamin D supplementation. Osteoporos Int 21:1121–1132PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Priemel M, von Domarus C, Klatte TO, Kessler S, Schlie J, Meier S et al (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25:305–312PubMedCrossRefGoogle Scholar
  14. 14.
    Yoon YS, Oh SW, Baik HW, Park HS, Kim WY (2004) Alcohol consumption and the metabolic syndrome in Korean adults: the 1998 Korean National Health and Nutrition Examination Survey. Am J Clin Nutr 80:217–224PubMedGoogle Scholar
  15. 15.
    Uusi-Rasi K, Semanick LM, Zanchetta JR, Bogado CE, Eriksen EF, Sato M et al (2005) Effects of teriparatide [rhPTH (1 – 34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women. Bone 36:948–958PubMedCrossRefGoogle Scholar
  16. 16.
    Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304PubMedCrossRefGoogle Scholar
  17. 17.
    Choi HS, Oh HJ, Choi H, Choi WH, Kim JG, Kim KM et al (2011) Vitamin D insufficiency in Korea—a greater threat to younger generation: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J Clin Endocrinol Metab 96:643–651PubMedCrossRefGoogle Scholar
  18. 18.
    Lips P, Wiersinga A, van Ginkel FC, Jongen MJ, Netelenbos JC, Hackeng WH et al (1988) The effect of vitamin D supplementation on vitamin D status and parathyroid function in elderly subjects. J Clin Endocrinol Metab 67:644–650PubMedCrossRefGoogle Scholar
  19. 19.
    Malabanan A, Veronikis IE, Holick MF (1998) Redefining vitamin D insufficiency. Lancet 351:805–806PubMedCrossRefGoogle Scholar
  20. 20.
    Peacock M (1998) Effects of calcium and vitamin D insufficiency on the skeleton. Osteoporos Int 8(Suppl 2):S45–51PubMedCrossRefGoogle Scholar
  21. 21.
    Chapuy MC, Preziosi P, Maamer M, Arnaud S, Galan P, Hercberg S et al (1997) Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 7:439–443PubMedCrossRefGoogle Scholar
  22. 22.
    Krall EA, Sahyoun N, Tannenbaum S, Dallal GE, Dawson-Hughes B (1989) Effect of vitamin D intake on seasonal variations in parathyroid hormone secretion in postmenopausal women. N Engl J Med 321:1777–1783PubMedCrossRefGoogle Scholar
  23. 23.
    Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW et al (2004) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or =60 y. Am J Clin Nutr 80:752–758PubMedGoogle Scholar
  24. 24.
    Lips P, Hosking D, Lippuner K, Norquist JM, Wehren L, Maalouf G et al (2006) The prevalence of vitamin D inadequacy amongst women with osteoporosis: an international epidemiological investigation. J Intern Med 260:245–254PubMedCrossRefGoogle Scholar
  25. 25.
    Choi HS (2013) Vitamin D status in Korea. Endocrinol Metab 28:12–16CrossRefGoogle Scholar
  26. 26.
    Kamen D, Aranow C (2008) Vitamin D in systemic lupus erythematosus. Curr Opin Rheumatol 20:532–537PubMedCrossRefGoogle Scholar
  27. 27.
    Wilkinson RJ, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A et al (2000) Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet 355:618–621PubMedCrossRefGoogle Scholar
  28. 28.
    Laaksi I, Ruohola JP, Tuohimaa P, Auvinen A, Haataja R, Pihlajamaki H et al (2007) An association of serum vitamin D concentrations <40 nmol/L with acute respiratory tract infection in young Finnish men. Am J Clin Nutr 86:714–717Google Scholar
  29. 29.
    Forman JP, Giovannucci E, Holmes MD, Bischoff-Ferrari HA, Tworoger SS, Willett WC et al (2007) Plasma 25-hydroxyvitamin D levels and risk of incident hypertension. Hypertension 49:1063–1069PubMedCrossRefGoogle Scholar
  30. 30.
    Giovannucci E, Liu Y, Hollis BW, Rimm EB (2008) 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med 168:1174–1180PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Pittas AG, Lau J, Hu FB, Dawson-Hughes B (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 92:2017–2029PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Mattila C, Knekt P, Mannisto S, Rissanen H, Laaksonen MA, Montonen J et al (2007) Serum 25-hydroxyvitamin D concentration and subsequent risk of type 2 diabetes. Diabetes Care 30:2569–2570PubMedCrossRefGoogle Scholar
  33. 33.
    Giovannucci E, Liu Y, Rimm EB, Hollis BW, Fuchs CS, Stampfer MJ et al (2006) Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst 98:451–459PubMedCrossRefGoogle Scholar
  34. 34.
    Jenab M, Bueno-de-Mesquita HB, Ferrari P, van Duijnhoven FJ, Norat T, Pischon T et al (2010) Association between pre-diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations:a nested case-control study. BMJ 340:b5500PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Shin D, Kim S, Kim KH, Lee K, Park SM (2014) Association between insulin resistance and bone mass in men. J Clin Endocrinol Metab 99:988–995PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2014

Authors and Affiliations

  • S. Hwang
    • 1
  • H. S. Choi
    • 2
  • K. M. Kim
    • 3
  • Y. Rhee
    • 1
  • S. K. Lim
    • 1
    Email author
  1. 1.Division of Endocrinology and Metabolism, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
  2. 2.Division of Endocrinology and Metabolism, Department of Internal MedicineDongguk University Ilsan Hospital, Dongguk University College of MedicineGoyangSouth Korea
  3. 3.Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang HospitalSeoul National University College of MedicineSeongnamSouth Korea

Personalised recommendations