Skip to main content
Log in

The role of patient-mode high-resolution peripheral quantitative computed tomography indices in the prediction of failure strength of the elderly women’s thoracic vertebral body

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The correlations between the failure load of 20 T12 vertebral bodies, their patient-mode high-resolution peripheral quantitative computed tomography (HR-pQCT) indices, and the L1 areal bone mineral density (aBMD) were investigated. For the prediction of the T12 vertebral failure load, the T12 HR-pQCT microarchitectural parameters added significant information to that of L1 aBMD and to that of cortical BMD, but not to that of T12 vertebral BMD and not to that of T12 trabecular BMD.

Introduction

HR-pQCT is a new in vivo imaging technique for assessing the three-dimensional microarchitecture of cortical and trabecular bone at the distal radius and tibia. But little is known about this technique in the direct measurement of vertebral body.

Methods

Twenty female donors with the mean age of 80.1 (7.6) years were included in the study. Dual X-ray absorptiometry of the lumbar spine and femur was performed. The spinal specimens (T11/T12/L1) were dissected, scanned using HR-pQCT scanner, and mechanically tested under 4° wedge compression. The L1 aBMD, T12 patient-mode HR-pQCT indices, and T12 vertebral failure loads were analyzed.

Results

For the prediction of vertebral failure load, the inclusion of BV/TV into L1 aBMD was the best model (R 2 = 0.52), Tb.N and Tb.Sp added significant information to the L1 aBMD and to the cortical BMD, but none of the vertebral microarchitectural parameters yielded additional significant information to the trabecular BMD (or BV/TV) and to the vertebral BMD.

Conclusion

Vertebral microarchitectural parameters obtained from the patient-mode HR-pQCT analysis provide significant information on bone strength complementary to that of aBMD and to that of cortical BMD, but not to that of vertebral BMD and not to that of trabecular BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lips P, Cooper C, Agnusdei D, Caulin F, Egger P, Johnell O, Kanis JA, Kellingray S, Leplege A, Liberman UA, McCloskey E, Minne H, Reeve J, Reginster JY, Scholz M, Todd C, De Vernejoul MC, Wiklund I (1999) Quality of life in patients with vertebral fractures: validation of the quality of life questionnaire of the European Foundation for Osteoporosis (QUALEFFO). Osteoporos Int 10:150–160

    Article  CAS  PubMed  Google Scholar 

  2. Krause M, Breer S, Mohrmann B, Vettorazzi E, Marshall RP, Amling M, Barvencik F (2013) Influence of non-traumatic thoracic and lumbar vertebral fractures on sagittal spine alignment assessed by radiation-free spinometry. Osteoporos Int 24(6):1859–1868

    Article  CAS  PubMed  Google Scholar 

  3. Christenson ES, Jiang X, Kagan R, Schnatz P (2012) Osteoporosis management in post-menopausal women. Minerva Ginecol 64(3):181–194

    CAS  PubMed  Google Scholar 

  4. Lochmüller EM, Bürklein D, Kuhn V, Glaser C, Müller R, Glüer CC, Eckstein F (2002) Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone 31(1):77–84

    Article  PubMed  Google Scholar 

  5. Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L (1999) Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography and ashing. Bone 25(6):713–724

    Article  CAS  PubMed  Google Scholar 

  6. Roux JP, Wegrzyn J, Arlot ME, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML (2010) Contribution of trabecular and cortical components to biomechanical behaviour of human vertebrae: an ex vivo study. J Bone Miner Res 25(2):356–361

    Article  PubMed  Google Scholar 

  7. Wegrzyn J, Rous JP, Arlot ME, Boutroy S, Vilayphiou N, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML (2010) Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behaviour of ex vivo human L3 vertebrae. J Bone Miner Res 25(11):2324–2331

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 41:946–957

    Article  CAS  PubMed  Google Scholar 

  9. Marangalou HJ, Eckstein F, Kuhn V, Ito K, Cataldi M, Taddei F, van Rietbergen B (2014) Locally measured microstructural parameters are better associated with vertebral strength than whole bone density. Osteoporos Int 25:1285–1296

    Article  Google Scholar 

  10. Wegrzyn J, Roux JP, Arlot ME, Boutroy S, Vilayphiou N, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML (2011) Determinants of the mechanical behaviour of human lumbar vertebrae after simulated mild fracture. J Bone Miner Res 26(4):739–746

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hussein AI, Morgan EF (2013) The effect of intravertebral heterogeneity in microstructure on vertebral strength and failure patterns. Osteoporos Int 24:979–989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Krause M, Museyko O, Breer S, Wulff B, Duckstein C, Vettorazzi E, Glueer C, Pueschel K, Engelke K, Amling M (2014) Accuracy of trabecular structure by HR-pQCT compared to gold standard μCT in th radius and tibia of patients with osteoporosis and long-term bisphosphonate therapy. Osteoporos Int. doi:10.1007/s00198-014-2650-4

    PubMed Central  Google Scholar 

  13. Liu XS, Cohen A, Shane E, Yin PT, Stein EM, Rogers H, Kokolus SL, McMahon DJ, Lappe JM, Recker RR, Lang T, Guo XE (2010) Bone density, geometry, microstructure, and stiffness: relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res 25:2229–2238

    Article  PubMed Central  PubMed  Google Scholar 

  14. MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29(10):1096–1105

    Article  PubMed  Google Scholar 

  15. Tjong W, Kazakia GJ, Burghardt AJ, Majumdar S (2012) The effect of voxel size on high-resolution peripheral computed tomography measurement of trabecular and cortical bone microstructure. Med Phys 39(4):1893–1903

    Article  PubMed Central  PubMed  Google Scholar 

  16. Cohen A, Dempster DW, Mueller R, Guo XE, Nickolas TL, Liu XS, Zhang XH et al (2010) Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int 21:263–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cockerill W, Ismail AA, Cooper C, Matthis C, Raspe H, Silman AJ, O’Neill TW (2000) Does location of vertebral deformity within the spine influence back pain and disability? European Vertebral Osteoporosis Study (EVOS) Group. Ann Rheum Dis 59(5):368–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Skrzypiec DM, Bishop NE, Klein A, Pueschel K, Morlock MM, Huber G (2013) Estimation of shear load sharing in moderately degenerated human lumbar spine. J Biomech 46(4):651–657

    Article  PubMed  Google Scholar 

  19. Hongo M, Gay RE, Hsu JT, Zhao KD, Ilharreborde B, Berglund LJ, An KN (2008) Effect of multiple freeze–thaw cycles on intervertebral dynamic motion characteristics in the porcine lumbar spine. J Biomech 41(4):916–920

    Article  PubMed Central  PubMed  Google Scholar 

  20. Nachemson A (1966) The load on lumbar disks in different positions of the body. Clin Orthop Relat Res 45:107–122

    CAS  PubMed  Google Scholar 

  21. Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech 4(2):1–27

    Google Scholar 

  22. Laib A, Ruegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-micron-resolution microcomputed tomography. Bone 24:35–39

    Article  CAS  PubMed  Google Scholar 

  23. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  CAS  PubMed  Google Scholar 

  24. Hildebrand T, Ruegsegger P (1997) A new method for the model independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  25. Buckley JM, Loo K, Motherway J (2007) Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40:767–774

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hansen S, Jensen JE, Ahrber F, Hauge EM, Brixen K (2011) The combination of structural parameters and areal bone mineral density improves relation to proximal femur strength: an in vitro study with high-resolution peripheral quantitative computed tomography. Calcif Tissue Int 89:335–346

    Article  CAS  PubMed  Google Scholar 

  27. Pistoia W, van Rietbergen B, Lochmüller EM, Lill CA, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848

    Article  CAS  PubMed  Google Scholar 

  28. Rao RD, Singrakhia MD (2003) Painful osteoporotic vertebral failure: pathogenesis, evaluation, and roles of vertebroplasty and kyphoplasty in its management. J Bone Joint Surg Am 85(10):2010–2022

    PubMed  Google Scholar 

  29. Hussein AI, Mason ZD, Morgan EF (2013) Presence of intervertebral discs alters observed stiffness and failure mechanisms in the vertebra. J Biomech 46:1683–1688

    Article  PubMed Central  PubMed  Google Scholar 

  30. Adams MA, Pollintine P, Tobias JH, Wakley GK, Dolan P (2006) Intervertebral disc degeneration can predispose to anterior vertebral failures in the thoracolumbar spine. J Bone Miner Res 21(9):1409–1416

    Article  PubMed  Google Scholar 

  31. Nekkanty S, Yerramshetty J, Kim D, Zauel R, Johnson E, Cody DD, Yeni YN (2010) Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies. Bone 47(4):783–789

    Article  PubMed Central  PubMed  Google Scholar 

  32. Pollintine P, Dolan P, Tobias JH, Adams MA (2004) Intervertebral disc degeneration can lead to ‘stress-shielding’ of the anterior vertebral body: a cause of osteoporotic vertebral failure? Spine 29(7):774–782

    Article  PubMed  Google Scholar 

  33. Maquer G, Schwiedrzik J, Zysset PK (2012) Embedding of human vertebral bodies leads to higher ultimate load and altered damage localisation under axial compression. Comput Methods Biomech Biomed Engin. doi:10.1080/10255842.2012.744400

    PubMed  Google Scholar 

  34. Bürklein D, Lochmüller EM, Kuhn V, Grimm J, Barkmann R, Müller R, Eckstein F (2001) Correlation of thoracic and lumbar vertebral failure loads with in situ vs. ex situ dural energy X-ray absorptionmetry. J Biomech 35:579–587

    Article  Google Scholar 

  35. O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018

    Article  PubMed  Google Scholar 

  36. Lochmüller EM, Pöschl K, Würstlin L, Matsuura M, Müller R, Link TM, Eckstein F (2008) Does thoracic or lumbar spine bone architecture predict vertebral failure strength more accurately than density? Osteoporos Int 19:537–545

    Article  PubMed  Google Scholar 

  37. Buckley JM, Kuo CC, Cheng LC, Loo K, Motherway J, Slyfield C, Deviren V, Ames C (2009) Relative strength of thoracic vertebrae in axial compression versus flexion. Spine J 9:478–485

    Article  PubMed  Google Scholar 

  38. McDonnell P, Harrison N, McHugh PE (2010) Investigation of the failure behaviour of vertebral trabecular architectures under uni-axial compression and wedge action loading conditions. Med Eng Phys 32(6):569–576

    Article  CAS  PubMed  Google Scholar 

  39. Kolb JP, Kueny RA, Püschel K, Boger A, Rueger JM, Morlock MM, Huber G, Lehmann W (2013) Does the cement stiffness affect fatigue fracture strength of vertebrae after cement augmentation in osteoporotic patients? Eur Spine J 22(7):1650–1656

    Article  PubMed Central  PubMed  Google Scholar 

  40. Berlemann U, Ferguson SJ, Nolte LP, Heini PF (2002) Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg (Br) 84:748–752

    Article  CAS  Google Scholar 

  41. Baroud G, Nemes J, Heini P, Steffen T (2003) Load shift of the intervertebral disc after vertebroplasty: a finite element study. Eur Spine J 12(4):421–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Hulme PA, Boyd SK, Heini PF, Ferguson SJ (2009) Differences in endplate deformation of the adjacent and augmented vertebra following cement augmentation. Eur Spine J 18(5):614–623

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kayanja MM, Evans K, Milks R, Lieberman IH (2006) Adjacent level load transfer following vertebral augmentation in the cadaveric spine. Spine 31:E790–E797

    Article  PubMed  Google Scholar 

  44. Bonnick SL (1998) Bone densitometry in clinical practice: application and interpretation. Humana, Totowa, New Jersey

    Google Scholar 

  45. Dall’Ara E, Varga P, Pahr D, Zysset P (2011) A calibration methodology QCT BMD for human vertebral body with registered micro-CT images. Med Phys 38:2602–2608

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the German Federal Ministry of Education and Research (BMBF) through the consortium “BioAsset” (Grant number 01EC1005). The authors also would like to acknowledge Birgit Wulff for harvesting the donors and counseling the next of kin.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Lu.

Additional information

Yongtao Lu and Matthias Krause contributed equally to this work and therefore share the first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Krause, M., Bishop, N. et al. The role of patient-mode high-resolution peripheral quantitative computed tomography indices in the prediction of failure strength of the elderly women’s thoracic vertebral body. Osteoporos Int 26, 237–244 (2015). https://doi.org/10.1007/s00198-014-2846-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2846-7

Keywords

Navigation