Skip to main content

Advertisement

Log in

Bone mineral density in men and children with haemophilia A and B: a systematic review and meta-analysis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Although haemophilia is not considered among the classic causes of secondary osteoporosis, the present meta-analysis provides strong evidence that men with haemophilia have a significant reduction in both lumbar spine and femoral bone mineral density, which appears to begin in childhood.

Introduction

Haemophilia is not considered among the classic causes of secondary osteoporosis. The aim of this study was to systematically review the literature for case–control trials that have studied bone mass in males with haemophilia and to meta-analyze the best evidence available.

Methods

Electronic databases MEDLINE, EMBASE and CENTRAL were systematically searched for case–control trials that have studied bone mass in men or boys with haemophilia. Standardized mean difference (SMD) for bone mineral density (BMD) in the lumbar spine was the main study outcome and SMD in femoral neck and total hip BMD the secondary ones. Patient and control characteristics, such as age, body mass index (BMI), level of physical activity and blood-borne infections were recorded as possible predictors of the main outcome.

Results

Thirteen studies were included in the systematic review and ten in the main outcome meta-analysis. Men with haemophilia demonstrated reduced lumbar spine [random effects SMD [95 % confidence interval (CI)] = −0.56 (−0.84, −0.28), between-study heterogeneity (I 2) = 51 %] and femoral neck BMD [random effects SMD (95 % CI) = −0.82 (−1.21, −0.44), I 2 = 63 %] compared with controls, which indicated a large and clinically significant association. Similar results were obtained for children [random effects SMD (95 % CI) = −0.92 (−1.77, −0.07), I 2 = 92 %]. No evidence of publication bias was detected. There was no evidence that age, BMI, level of physical activity or presence of blood-borne infections predicted lumbar spine BMD.

Conclusions

This meta-analysis shows that men with haemophilia present a significant reduction in both lumbar spine and hip BMD, which appears to begin in childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. NIH Consensus Development Panel on Osteoporosis (2001) Osteoporosis prevention, diagnosis and therapy. J Am Med Assoc 285:785–795

    Article  Google Scholar 

  2. Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018

    Article  PubMed  CAS  Google Scholar 

  3. Ebeling P (2008) Osteoporosis in men. N Engl J Med 358:1474–1482. doi:10.1056/NEJMcp0707217

    Article  PubMed  CAS  Google Scholar 

  4. Gielen E, Vanderschueren D, Callewaert F, Boonen S (2001) Osteoporosis in men. Best Pract Res Clin Endocrinol Metab 25:321–335. doi:10.1016/j.beem.2010.08.012

    Article  Google Scholar 

  5. Hoyer LW (1994) Haemophilia A. N Engl J Med 330:38–47

    Article  PubMed  CAS  Google Scholar 

  6. Hoots WK, Rodriguez N, Boggio L, Valentino LA (2007) Pathogenesis of haemophilic synovitis: clinical aspects. Haemophilia 13(Suppl 3):4–9

    Article  PubMed  CAS  Google Scholar 

  7. Lafeber FP, Miossec P, Valentino LA (2008) Physiopathology of haemophilic arthropathy. Haemophilia 14(Suppl 4):3–9. doi:10.1111/j.1365-2516.2008.01732.x

    Article  PubMed  CAS  Google Scholar 

  8. Forsyth AL, Quon DV, Konkle BA (2011) Role of exercise and physical activity on haemophilic arthropathy, fall prevention and osteoporosis. Haemophilia 17:e870–e876. doi:10.1111/j.1365-2516.2011.02514.x

    PubMed  CAS  Google Scholar 

  9. Gerstner G, Damiano ML, Tom A, Worman C, Schultz W, Recht M, Stopeck AT (2009) Prevalence and risk factors associated with decreased bone mineral density in patients with haemophilia. Haemophilia 15:559–565. doi:10.1111/j.1365-2516.2008.01963.x

    Article  PubMed  CAS  Google Scholar 

  10. Anagnostis P, Vakalopoulou S, Slavakis A, Charizopoulou M, Kazantzidou E, Chrysopoulou T, Vyzantiadis TA, Moka E, Agapidou A, Garipidou V (2012) Reduced bone mineral density in patients with haemophilia A and B in Northern Greece. Thromb Haemost 107:545–551. doi:10.1160/TH11-08-05563

    Article  PubMed  CAS  Google Scholar 

  11. Alioglu B, Selver B, Ozsoy H, Koca G, Ozdemir M, Dallar Y (2012) Evaluation of bone mineral density in Turkish children with severe haemophilia A: Ankara hospital experience. Haemophilia 18:69–74. doi:10.1111/j.1365-2516.2011.02587.x

    Article  PubMed  CAS  Google Scholar 

  12. Ranta S, Viljakainen H, Mäkipernaa A, Mäkitie O (2012) Peripheral quantitative computed tomography (pQCT) reveals alterations in the three-dimensional bone structure in children with haemophilia. Haemophilia 18:955–961. doi:10.1111/j.1365-2516.2012.02880.x

    Article  PubMed  CAS  Google Scholar 

  13. Ranta S, Viljakainen H, Mäkipernaa A, Mäkitie O (2011) Hypercalciuria in children with haemophilia suggests primary skeletal pathology. Br J Haematol 153:364–371. doi:10.1111/j.1365-2141.2011.08639.x

    Article  PubMed  Google Scholar 

  14. Rezaeifarid M, Soveid M, Ghaemi S (2011) Karimi M (2011) Bone mineral density in Iranian patients with haemophilia: the first experience in southern Iran. Haemophilia 17:552–553. doi:10.1111/j.1365-2516.2010.02416.x

    Article  PubMed  CAS  Google Scholar 

  15. Christoforidis A, Economou M, Papadopoulou E, Kazantzidou E, Farmaki E, Tzimouli V, Tsatra I, Gompakis N, Athanassiou-Metaxa M (2011) Comparative study of dual energy X-ray absorptiometry and quantitative ultrasonography with the use of biochemical markers of bone turnover in boys with haemophilia. Haemophilia 17:e217–e222. doi:10.1111/j.1365-2516.2010.02385.x

    Article  PubMed  CAS  Google Scholar 

  16. Mansouritorghabeh H, Rezaieyazdi Z, Saadati N, Saghafi M, Mirfeizi Z, Rezai J (2009) Reduced bone density in individuals with severe hemophilia B. Int J Rheum Dis 12:125–129. doi:10.1111/j.1756-185X.2009.01394.x

    Article  PubMed  Google Scholar 

  17. Mansouritorghabeh H, Rezaieyazdi Z, Badiei Z (2008) Are individuals with severe haemophilia A prone to reduced bone density? Rheumatol Int 28:1079–1083. doi:10.1007/s00296-008-0591-y

    Article  PubMed  Google Scholar 

  18. Tlacuilo-Parra A, Morales-Zambrano R, Tostado-Rabago N, Esparza-Flores MA, Lopez-Guido B, Orozco-Alcala J (2008) Inactivity is a risk factor for low bone mineral density among haemophilic children. Br J Haematol 140:562–567. doi:10.1111/j.1365-2141.2007.06972.x

    Article  PubMed  Google Scholar 

  19. Abdelrazik N, Reda M, El-Ziny M, Rabea H (2007) Evaluation of bone mineral density in children with hemophilia: Mansoura University children hospital (MUCH) experience, Mansoura, Egypt. Hematology 12:431–437

    Article  PubMed  Google Scholar 

  20. Nair AP, Jijina F, Ghosh K, Madkaikar M, Shrikhande M, Nema M (2007) Osteoporosis in young haemophiliacs from western India. Am J Hematol 82:453–457

    Article  PubMed  Google Scholar 

  21. Barnes C, Wong P, Egan B, Speller T, Cameron F, Jones G, Ekert H, Monagle P (2004) Reduced bone density among children with severe hemophilia. Pediatrics 114:e177–e181

    Article  PubMed  Google Scholar 

  22. Gallacher SJ, Deighan C, Wallace AM, Cowan RA, Fraser WD, Fenner JA, Lowe GD, Boyle IT (1994) Association of severe haemophilia A with osteoporosis: a densitometric and biochemical study. Q J Med 87:181–186

    PubMed  CAS  Google Scholar 

  23. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  24. Egger M, Davey Smith G, Altman D (2001) Systematic reviews in health care: meta-analysis in context. BMJ Publishing Group, London

    Book  Google Scholar 

  25. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Altman DG, Bland JM (1996) Transformations, means, and confidence intervals. BMJ 312:1079

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses. In: 3rd Symposium on Systematic Reviews: Beyond the Basics, http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm.

  28. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. doi:10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cohen J (1997) Statistical power analysis for behavioral sciences, revised ed. Academic Press, New York

    Google Scholar 

  30. Wolf FM (1986) Meta-analysis: quantitative methods for research synthesis. Sage, Beverly Hill

    Google Scholar 

  31. Dunlap WP (1999) A program to compute McGraw and Wong’s common language effect size indicator. Behav Res Methods Instrum Comput 31:706–709

    Article  PubMed  CAS  Google Scholar 

  32. Iorio A, Fabbriciani G, Marcucci M, Brozzetti M, Filipponi P (2010) Bone mineral density in haemophilia patients. A meta-analysis. Thromb Haemost 103:596–603. doi:10.1160/TH09-09-0629

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Goulis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

Characteristics and outcomes of the studies included in the systematic review (XLS 62 kb)

Online resource 2

Quality of the studies included in the systematic review, according to the Newcastle-Ottawa scale for case–control studies (DOC 38 kb)

Online resource 3

Forest plot of comparison between men with haemophilia and controls in study outcomes: (a) lumbar spine T-score (adult population) and (b) lumbar spine Z-score (pediatric population) (DOC 67 kb)

Online resource 4

Funnel plot of comparison between men with haemophilia and controls in study outcomes: (a) lumbar spine, (b) femoral neck and (c) total hip bone mineral density. (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paschou, S.A., Anagnostis, P., Karras, S. et al. Bone mineral density in men and children with haemophilia A and B: a systematic review and meta-analysis. Osteoporos Int 25, 2399–2407 (2014). https://doi.org/10.1007/s00198-014-2773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2773-7

Keywords

Navigation