Abstract
Summary
We found that lumbar spine texture analysis using trabecular bone score (TBS) is a risk factor for MOF and a risk factor for death in a retrospective cohort study from a large clinical registry for the province of Manitoba, Canada.
Introduction
FRAX® estimates the 10-year probability of major osteoporotic fracture (MOF) using clinical risk factors and femoral neck bone mineral density (BMD). Trabecular bone score (TBS), derived from texture in the spine dual X-ray absorptiometry (DXA) image, is related to bone microarchitecture and fracture risk independently of BMD. Our objective was to determine whether TBS provides information on MOF probability beyond that provided by the FRAX variables.
Methods
We included 33,352 women aged 40–100 years (mean 63 years) with baseline DXA measurements of lumbar spine TBS and femoral neck BMD. The association between TBS, the FRAX variables, and the risk of MOF or death was examined using an extension of the Poisson regression model.
Results
During the mean of 4.7 years, 1,754 women died and 1,872 sustained one or more MOF. For each standard deviation reduction in TBS, there was a 36 % increase in MOF risk (HR 1.36, 95 % CI 1.30–1.42, p < 0.001) and a 32 % increase in death (HR 1.32, 95 % CI 1.26–1.39, p < 0.001). When adjusted for significant clinical risk factors and femoral neck BMD, lumbar spine TBS was still a significant predictor of MOF (HR 1.18, 95 % CI 1.12–1.23) and death (HR 1.20, 95 % CI 1.14–1.26). Models for estimating MOF probability, accounting for competing mortality, showed that low TBS (10th percentile) increased risk by 1.5–1.6-fold compared with high TBS (90th percentile) across a broad range of ages and femoral neck T-scores.
Conclusions
Lumbar spine TBS is able to predict incident MOF independent of FRAX clinical risk factors and femoral neck BMD even after accounting for the increased death hazard.
This is a preview of subscription content, access via your institution.


References
Keen RW (2003) Burden of osteoporosis and fractures. Curr Osteoporos Rep 1:66–70
Lips P, van Schoor NM (2005) Quality of life in patients with osteoporosis. Osteoporos Int 16:447–455
Hernlund E, Svedbom A, Ivergard M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136
(1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129
Cranney A, Jamal SA, Tsang JF et al (2007) Low bone mineral density and fracture burden in postmenopausal women. CMAJ 177:575–580
Stone KL, Seeley DG, Lui LY et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954
Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046
Kanis JA, Oden A, Johansson H et al (2009) FRAX and its applications to clinical practice. Bone 44:734–743
Griffith JF, Genant HK (2012) New advances in imaging osteoporosis and its complications. Endocrine 42:39–51
Armas LA, Recker RR (2012) Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am 41:475–486
Bousson V, Bergot C, Sutter B et al (2011) Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int 23:1489–1501
Pothuaud L, Barthe N, Krieg MA et al (2009) Evaluation of the Potential Use of Trabecular Bone Score to Complement Bone Mineral Density in the Diagnosis of Osteoporosis: A Preliminary Spine BMD-Matched, Case-Control Study. J Clin Densitom 12:170–176
Hans D, Goertzen AL, Krieg MA et al (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26:2762–2769
Iki M, Tamaki J, Kadowaki E et al (2013) Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: The Japanese population-based osteoporosis (JPOS) cohort study. J Bone Miner Res
Boutroy S, Hans D, Sornay-Rendu E et al (2013) Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int 24:77–85
Leslie WD, Krieg MA, Hans D (2013) Clinical factors associated with trabecular bone score. J Clin Densitom
Leslie WD, Metge C (2003) Establishing a regional bone density program: lessons from the Manitoba experience. J Clin Densitom 6:275–282
Leslie WD, Caetano PA, MacWilliam LR et al (2005) Construction and validation of a population-based bone densitometry database. J Clin Densitom 8:25–30
Leslie WD, Lix LM, Johansson H et al (2012) Does osteoporosis therapy invalidate FRAX for fracture prediction? J Bone Miner Res 27:1243–1251
Roos NP, Shapiro E (1999) Revisiting the Manitoba Centre for Health Policy and Evaluation and its population-based health information system. Med Care 37:JS10–JS14
WHO Collaborating Centre for Drug Statistics Methodology (eds) (2005) Guidelines for ATC classification and DDD assignment. Oslo
Kozyrskyj AL, Mustard CA (1998) Validation of an electronic, population-based prescription database. Ann Pharmacother 32:1152–1157
Leslie WD, Tsang JF, Caetano PA et al (2007) Effectiveness of bone density measurement for predicting osteoporotic fractures in clinical practice. J Clin Endocrinol Metab 92:77–81
Lix LM, Azimaee M, Osman BA et al (2012) Osteoporosis-related fracture case definitions for population-based administrative data. BMC Public Health 12:301
Fraser LA, Langsetmo L, Berger C et al (2011) Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos. Osteoporos Int 22:829–837
Leslie WD, Lix LM, Johansson H et al (2010) Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration. J Bone Miner Res 25:2350–2358
Breslow NE, Day NE (1987) Statistical methods in cancer research. Volume II–The design and analysis of cohort studies. IARC Sci Publ 131–135
Krieg MA, Aubry-Rozier B, Hans D et al (2013) Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos Int 24:1073–1078
Popp AW, Guler S, Lamy O et al (2013) Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J Bone Miner Res 28:449–454
Acknowledgments
The authors are indebted to Manitoba Health for the provision of data (HIPC 2012/2013-18). The results and conclusions are those of the authors, and no official endorsement by Manitoba Health is intended or should be inferred. This article has been reviewed and approved by the members of the Manitoba Bone Density Program Committee.
Conflicts of interest
William D. Leslie: Speaker bureau: Amgen, Eli Lilly, Novartis. Research grants: Amgen, Genzyme. John A. Kanis: Nothing to declare for FRAX and the context of this paper, but numerous ad hoc consultancies for: Industry: Abiogen, Italy; Amgen, USA, Switzerland and Belgium; Bayer, Germany; Besins-Iscovesco, France; Biosintetica, Brazil; Boehringer Ingelheim, UK; Celtrix, USA; D3A, France; Gador, Argentina; General Electric, USA; GSK, UK, USA; Hologic, Belgium and USA; Kissei, Japan; Leiras, Finland; Leo Pharma, Denmark; Lilly, USA, Canada, Japan, Australia and UK; Merck Research Labs, USA; Merlin Ventures, UK; MRL, China; Novartis, Switzerland and USA; Novo Nordisk, Denmark; Nycomed, Norway; Ono, UK and Japan; Organon, Holland; Parke-Davis, USA; Pfizer USA; Pharmexa, Denmark; Procter and Gamble, UK, USA; ProStrakan, UK; Roche, Germany, Australia, Switzerland, USA; Rotta Research, Italy; Sanofi-Aventis, USA; Schering, Germany and Finland; Servier, France and UK; Shire, UK; Solvay, France and Germany; Strathmann, Germany; Tethys, USA; Teijin, Japan; Teva, Israel; UBS, Belgium; Unigene, USA; Warburg-Pincus, UK; Warner-Lambert, USA; Wyeth, USA Governmental and NGOs: National Institute for health and clinical Excellence (NICE), UK; International Osteoporosis Foundation; INSERM, France; Ministry of Public Health, China; Ministry of Health, Australia; National Osteoporosis Society (UK); WHO. Didier Hans: Co-ownership in the TBS patent. Stock options or royalties: Med-Imaps. Research grants: Amgen, Eli Lilly, Servier, Nycomed-Takeda. Eugene McCloskey: Nothing to declare for FRAX and the context of this paper, but numerous ad hoc consultancies/ speking honoraria and/or research funding from Amgen, Bayer, General Electric, GSK, Hologic, Lilly, Merck Research Labs, Novartis, Novo Nordisk, Nycomed, Ono, Pfizer, ProStrakan, Roche, Sanofi-Aventis, Servier, Tethys, UBS and Warner-Chilcott. H. Johansson, O Lamy, A. Oden declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOC 113 kb)
Rights and permissions
About this article
Cite this article
Leslie, W.D., Johansson, H., Kanis, J.A. et al. Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos Int 25, 2271–2277 (2014). https://doi.org/10.1007/s00198-014-2761-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00198-014-2761-y
Keywords
- Bone mineral density
- Osteoporosis
- Post-menopausal women
- Texture analysis
- Trabecular bone score