Skip to main content

Advertisement

Log in

Skeletal and nonskeletal effects of vitamin D: is vitamin D a tonic for bone and other tissues?

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The vitamin D endocrine system is critical for the maintenance of circulating calcium concentrations, but recently, there has been advocacy for the widespread use of vitamin D supplements to improve skeletal and nonskeletal health. Recent studies of tissue-selective vitamin D receptor knockout mice indicate that the principal action of vitamin D responsible for the maintenance of calcium homoeostasis is the regulation of intestinal calcium absorption. High levels of vitamin D can increase bone resorption and impair mineralization, consistent with its role in maintaining circulating calcium concentrations. These findings suggest that circumspection is appropriate in its clinical use. There is now substantial clinical trial data with vitamin D supplements, which fails to establish their efficacy on bone density or the prevention of falls or fractures. However, some trials in frail and/or vitamin D-deficient populations have produced positive outcomes. Where there are positive effects of vitamin D supplementation on skeletal outcomes, these are mainly seen in cohorts with baseline circulating 25-hydroxyvitamin D (25(OH)D) levels in the range 25–40 nmol/L or lower. A great diversity of nonskeletal conditions have been associated with low 25(OH)D, but there is little evidence for efficacy of vitamin D supplementation for such end-points. At present, supplements should be advised for populations with risk factors (e.g., lifestyle, skin color, and frailty) for having serum 25(OH)D levels in the 25- to 40-nmol/L range or below. A dose of ≤800 IU/day is adequate. This approach will maintain 25(OH)D levels well above the threshold for osteomalacia and makes allowance for the poor accuracy and precision of some 25(OH)D assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang YJ, Zhu JG, DeLuca HF (2012) Where is the vitamin D receptor? Arch Biochem Biophys 523:123–133

    Article  PubMed  CAS  Google Scholar 

  2. Wang YJ, DeLuca HF (2011) Is the vitamin D receptor found in muscle? Endocrinology 152:354–363

    Article  PubMed  CAS  Google Scholar 

  3. Rosen CJ, Adams JS, Bikle DD et al (2012) The nonskeletal effects of vitamin D: an endocrine society scientific statement. Endo Rev 33:456–492

    Article  CAS  Google Scholar 

  4. Haussler MR, Haussler CA, Whitfield GK et al (2010) The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the “Fountain of Youth” to mediate healthful aging. J Steroid Biochem Mol Biol 121:88–97

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Masuyama R, Nakaya Y, Katsumata S et al (2003) Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. J Bone Miner Res 18:1217–1226

    Article  PubMed  CAS  Google Scholar 

  6. Lieben L, Masuyama R, Torrekens S et al (2012) Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest 122:1803–1815

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Marks HD, Fleet JC, Peleg S (2007) Transgenic expression of the human vitamin D receptor (hVDR) in the duodenum of VDR-null mice attenuates the age-dependent decline in calcium absorption. J Steroid Biochem Mol Biol 103:513–516

    Article  PubMed  CAS  Google Scholar 

  8. Xue Y, Fleet JC (2009) Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology 136:1317–1327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Tanaka H, Seino Y (2004) Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows excessive bone formation in normal mineral condition. J Steroid Biochem Mol Biol 89–90:343–345

    Article  PubMed  Google Scholar 

  10. Yamamoto Y, Yoshizawa T, Fukuda T et al (2013) Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 154:1008–1020

    Article  PubMed  CAS  Google Scholar 

  11. Rossini M, Gatti D, Viapiana O, et al. (2012) Short-term effects on bone turnover markers of a single high dose of oral vitamin D3. J Clin Endocrinol Metab 97

  12. Sanders KM, Nicholson GC, Ebeling PR (2013) Is high dose vitamin D harmful? Calcif Tissue Int 92:191–206

    Article  PubMed  CAS  Google Scholar 

  13. Rossini M, Adami S, Viapiana O et al (2012) Dose-dependent short-term effects of single high doses of oral vitamin D3 on bone turnover markers. Calcif Tissue Int 91:365–369

    Article  PubMed  CAS  Google Scholar 

  14. Selby PL, Davies M, Marks JS et al (1995) Vitamin D intoxication causes hypercalcaemia by increased bone resorption which responds to pamidronate. Clin Endocrinol 43:531–536

    Article  CAS  Google Scholar 

  15. Ott SM, Chesnut CH (1989) Calcitriol treatment is not effective in postmenopausal osteoporosis. Ann Intern Med 110:267–274

    Article  PubMed  CAS  Google Scholar 

  16. Sanders KM, Stuart AL, Williamson EJ et al (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303:1815–1822

    Article  PubMed  CAS  Google Scholar 

  17. Ebeling PR, Wark JD, Yeung S et al (2001) Effects of calcitriol or calcium on bone mineral density, bone turnover, and fractures in men with primary osteoporosis: a two-year randomized, double blind, double placebo study. J Clin Endocrinol Metab 86:4098–4103

    Article  PubMed  CAS  Google Scholar 

  18. Isaia G, Giorgino R, Rini GB et al (2003) Prevalence of hypovitaminosis D in elderly women in Italy: clinical consequences and risk factors. Osteoporos Int 14:577–582

    Article  PubMed  CAS  Google Scholar 

  19. Steingrimsdottir L, Gunnarsson O, Indridason OS et al (2005) Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA 294:2336–2341

    Article  PubMed  CAS  Google Scholar 

  20. Lucas JA, Bolland MJ, Grey AB et al (2005) Determinants of vitamin D status in older women living in a subtropical climate. Osteoporos Int 16:1641–1648

    Article  PubMed  CAS  Google Scholar 

  21. Bolland MJ, Grey AB, Ames RW et al (2006) Determinants of vitamin D status in older men living in a subtropical climate. Osteoporos Int 17:1742–1748

    Article  PubMed  CAS  Google Scholar 

  22. Arabi A, Baddoura R, El-Rassi R et al (2012) PTH level but not 25 (OH) vitamin D level predicts bone loss rates in the elderly. Osteoporos Int 23:971–980

    Article  PubMed  CAS  Google Scholar 

  23. Need AG, O'Loughlin PD, Morris HA et al (2008) Vitamin D metabolites and calcium absorption in severe vitamin D deficiency. J Bone Miner Res 23:1859–1863

    Article  PubMed  CAS  Google Scholar 

  24. Lips P, van Schoor NM (2011) The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab 25:585–591

    Article  PubMed  CAS  Google Scholar 

  25. Gallagher JC, Sai A, Templin T et al (2012) Dose response to vitamin D supplementation in postmenopausal women a randomized trial. Ann Intern Med 156:425–437

    Article  PubMed  Google Scholar 

  26. Gallagher JC, Yalamanchili V, Smith LM (2012) The effect of vitamin D on calcium absorption in older women. J Clin Endocrinol Metab 97:3550–3556

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Gallagher CJ, Jindal PS, Lynette MS (2013) Vitamin D does not increase calcium absorption in young women: a randomized clinical trial. J Bone Mineral Res Doi:10.1002/jbmr.2121

  28. Bouillon R, Van Schoor NM, Gielen E et al (2013) Optimal vitamin D status: a critical analysis on the basis of evidence-based medicine. J Clin Endocrinol Metab 98:E1283–E1304

    Article  PubMed  CAS  Google Scholar 

  29. Bacon CJ, Gamble GD, Horne AM et al (2009) High-dose oral vitamin D3 supplementation in the elderly. Osteoporos Int 20:1407–1415

    Article  PubMed  CAS  Google Scholar 

  30. Malabanan A, Veronikis IE, Holick MF (1998) Redefining vitamin D insufficiency. Lancet 351:805–806

    Article  PubMed  CAS  Google Scholar 

  31. Reid IR, Bolland MJ, Grey A (2014) Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet 383:146–155

    Article  PubMed  CAS  Google Scholar 

  32. Lips P, Chapuy MC, Dawson-Hughes B et al (1999) An international comparison of serum 25-hydroxyvitamin D measurements. Osteoporos Int 9:394–397

    Article  PubMed  CAS  Google Scholar 

  33. El-Desouki MI, Othman SM, Fouda MA (2004) Bone mineral density and bone scintigraphy in adult Saudi female patients with osteomalacia. Saudi Med J 25:355–358

    PubMed  Google Scholar 

  34. Avenell A, Gillespie WJ, Gillespie LD et al (2009) Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev. doi:10.1002/14651858.CD000227.pub3:

    Google Scholar 

  35. Abrahamsen B, Masud T, Avenell A et al (2010) Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture trials in US and Europe. BMJ 340:B5463

    Article  Google Scholar 

  36. Bischoff-Ferrari HA, Willett WC, Orav EJ et al (2012) A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med 367:40–49

    Article  PubMed  CAS  Google Scholar 

  37. Reid IR, Mason B, Horne A et al (2006) Randomized controlled trial of calcium in healthy older women. Am J Med 119:777–785

    Article  PubMed  CAS  Google Scholar 

  38. Tang BMP, Eslick GD, Nowson C et al (2007) Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 370:657–666

    Article  PubMed  CAS  Google Scholar 

  39. Curtis JR, Delzell E, Chen L et al (2011) The relationship between bisphosphonate adherence and fracture: is it the behavior or the medication? Results from the placebo arm of the fracture intervention trial. J Bone Miner Res 26:683–688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Abrahamsen B, Avenell A, Bolland M, et al. (2013) A pooled analysis of vitamin D dose requirements for fracture prevention. IBMS BoneKEy 10, Doi:10.1038/bonekey.2012.1256

  41. Chapuy MC, Arlot ME, Duboeuf F et al (1992) Vitamin-D3 and calcium to prevent hip fractures in elderly women. N Engl J Med 327:1637–1642

    Article  PubMed  CAS  Google Scholar 

  42. Chapuy MC, Arlot ME, Delmas PD et al (1994) Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ 308:1081–1082

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Chapuy MC, Pamphile R, Paris E et al (2002) Combined calcium and vitamin D-3 supplementation in elderly women: confirmation of reversal of secondary hyperparathyroidism and hip fracture risk: the Decalyos II study. Osteoporos Int 13:257–264

    Article  PubMed  CAS  Google Scholar 

  44. Reid IR, Bolland MJ (2014) Calcium risk-benefit updated—new WHI analyses. Maturitas 77:1–3

    Article  PubMed  Google Scholar 

  45. Priemel M, von Domarus C, Klatte TO et al (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25:305–312

    Article  PubMed  CAS  Google Scholar 

  46. Bischoff-Ferrari HA, Willett WC, Wong JB et al (2005) Fracture prevention with vitamin D supplementation—a meta-analysis of randomized controlled trials. JAMA 293:2257–2264

    Article  PubMed  CAS  Google Scholar 

  47. Irani PF (1976) Electromyography in nutritional osteomalacic myopathy. J Neurol Neurosurg Psychiatry 39:686–693

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Hamilton B, Whiteley R, Farooq A et al (2014) Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J Sci Med Sport 17:139–143

    Article  PubMed  Google Scholar 

  49. Knutsen KV, Madar AA, Lagerløv P et al (2014) Does vitamin D improve muscle strength in adults? a randomized, double-blind, placebo-controlled trial among ethnic minorities in Norway. J Clin Endocrinol Metab 99:194–202

    Article  PubMed  CAS  Google Scholar 

  50. Murad MH, Elamin KB, Abu Elnour NO et al (2011) The effect of vitamin D on falls: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2997–3006

    Article  PubMed  CAS  Google Scholar 

  51. Bolland MJ, Grey A, Gamble GD, et al. (2014) Vitamin D supplementation and falls: a trial sequential meta-analysis. Lancet Diabetes Endocrinol (published online 29/4/2014)

  52. Gillespie LD, Robertson MC, Gillespie WJ, et al. (2012) Interventions for preventing falls in older people living in the community. Cochrane Database of Systematic Reviews 9: art. no.: CD007146

  53. Cameron ID, Murray GR, Gillespie LD, et al. (2010) Interventions for preventing falls in older people in nursing care facilities and hospitals. Cochrane Database of Systematic Reviews Issue 1. Art. no.: CD005465, Doi:10.1002/14651858.CD14005465.pub14651852

  54. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB et al (2009) (2009) Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials—art. no. b3692. Br Med J 339:B3692

    Article  CAS  Google Scholar 

  55. Baker LRI, Ackrill P, Cattell WR et al (1974) Iatrogenic osteomalacia and myopathy due to phosphate depletion. BMJ 3:150–152

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Schubert L, DeLuca HF (2010) Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys 500:157–161

    Article  PubMed  CAS  Google Scholar 

  57. Dukas L, Schacht E, Runge M (2010) Independent from muscle power and balance performance, a creatinine clearance below 65 mL/min is a significant and independent risk factor for falls and fall-related fractures in elderly men and women diagnosed with osteoporosis. Osteoporos Int 21:1237–1245

    Article  PubMed  CAS  Google Scholar 

  58. Gallagher JC, Rapuri PB, Smith LMAFNGJC et al (2007) An age-related decrease in creatinine clearance is associated with an increase in number of falls in untreated women but not in women receiving calcitriol treatment. J Clin Endocrinol Metab 92:51–58

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Arvold DS, Odean MJ, Dornfeld MP et al (2009) Correlation of symptoms with vitamin D deficiency and symptom response to cholecalciferol treatment: a randomized controlled trial. Endocr Pract 15:203–212

    Article  PubMed  Google Scholar 

  60. Jackson RD, LaCroix AZ, Gass M et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354:669–683

    Article  PubMed  CAS  Google Scholar 

  61. RECORD Trial Group (2005) Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (randomised evaluation of calcium or vitamin D, record): a randomised placebo-controlled trial. Lancet 365:1621–1628

    Article  Google Scholar 

  62. Elamin MB, Abu Elnour NO, Elamin KB et al (2011) Vitamin D and cardiovascular outcomes: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:1931–1942

    Article  PubMed  CAS  Google Scholar 

  63. Chung M, Lee J, Terasawa T et al (2011) Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the US Preventive Services Task Force. Ann Intern Med 155:827–838

    Article  PubMed  Google Scholar 

  64. Bolland MJ, Grey A, Gamble GD, et al. (2014) Are more trials of vitamin D supplementation needed for skeletal, vascular or cancer outcomes? A trial sequential meta-analysis. Lancet Diab Endocrinol http://dx.doi.org/10.1016/S2213-8587(13)70212-2

  65. Autier P, Boniol M, Pizot C et al (2014) Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol 2:76–89

    Article  PubMed  CAS  Google Scholar 

  66. Reid D, Toole BJ, Knox S et al (2011) The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am J Clin Nutr 93:1006–1011

    Article  PubMed  CAS  Google Scholar 

  67. Robbins JA, Aragaki A, Crandall CJ, et al. (2013) Women’s health initiative clinical trials: interaction of calcium and vitamin D with hormone therapy. Menopause 21

  68. Iuliano-Burns S, Ayton J, Hillam S et al (2012) Skeletal and hormonal responses to vitamin D supplementation during sunlight deprivation in Antarctic expeditioners. Osteoporos Int 23:2461–2467

    Article  PubMed  CAS  Google Scholar 

  69. Wamberg L, Pedersen SB, Richelsen B et al (2013) The effect of high-dose vitamin D supplementation on calciotropic hormones and bone mineral density in obese subjects with low levels of circulating 25-hydroxyvitamin D: results from a randomized controlled study. Calcif Tissue Int 93:69–77

    Article  PubMed  CAS  Google Scholar 

  70. Macdonald HM, Wood AD, Aucott LS et al (2013) Hip bone loss is attenuated with 1000 IU but not 400 IU daily vitamin D3: a 1-year double-blind RCT in postmenopausal women. J Bone Miner Res 28:2202–2213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the Health Research Council of New Zealand.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Reid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reid, I.R., Bolland, M.J. Skeletal and nonskeletal effects of vitamin D: is vitamin D a tonic for bone and other tissues?. Osteoporos Int 25, 2347–2357 (2014). https://doi.org/10.1007/s00198-014-2749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2749-7

Keywords

Navigation