Osteoporosis International

, Volume 25, Issue 7, pp 1837–1844 | Cite as

Higher serum uric acid as a protective factor against incident osteoporotic fractures in Korean men: a longitudinal study using the National Claim Registry

  • B.-J. Kim
  • S. Baek
  • S. H. Ahn
  • S. H. Kim
  • M.-W. Jo
  • S. J. Bae
  • H.-K. Kim
  • J. Choe
  • G.-M. Park
  • Y.-H. Kim
  • S. H. Lee
  • G. S. Kim
  • J.-M. Koh
Original Article

Abstract

Summary

In this large longitudinal study of 16,078 Korean men aged 50 years or older, we observed that baseline elevation of serum uric acid level significantly associated with a lower risk of incident fractures at osteoporosis-related sites during an average follow-up period of 3 years.

Introduction

Male osteoporosis and related fractures are becoming recognized as important public health concerns. Oxidative stress has detrimental effects on bone metabolism, and serum uric acid (UA) is known to be a strong endogenous antioxidant. In the present study, we performed a large longitudinal study with an average follow-up period of 3 years to clarify the role of UA on the risk of incident osteoporotic fractures (OFs).

Methods

A total of 16,078 Korean men aged 50 years or older who had undergone comprehensive routine health examinations were enrolled. Incident fractures at osteoporosis-related sites (e.g., hip, spine, distal radius, and proximal humerus) that occurred after the baseline examinations were identified from the nationwide claims database of the Health Insurance Review and Assessment Service of Korea by using selected International Classification of Diseases, 10th revision codes.

Results

In total, 158 (1.0 %) men developed incident OFs. The event rate was 33.1 per 10,000 person-years. Subjects without incident OFs had 6.0 % higher serum UA levels than subjects with OFs (P = 0.001). Multivariable-adjusted Cox proportional hazard analyses adjusted for age, body mass index, glomerular filtration rate, lifestyle factors, medical and drug histories, and the presence of baseline radiological vertebral fractures revealed that the hazard ratio per standard deviation increase of baseline UA levels for the development of incident OFs was 0.829 (95 % CI = 0.695–0.989, P = 0.038).

Conclusions

These data provide the epidemiological evidence that serum UA may act as a protective factor against the development of incident OFs in Korean men.

Keywords

Antioxidant Men Osteoporosis Osteoporotic fracture Uric acid 

Supplementary material

198_2014_2697_MOESM1_ESM.docx (16 kb)
ESM 1(DOCX 15 kb)

References

  1. 1.
    Vallarta-Ast N, Krueger D, Wrase C, Agrawal S, Binkley N (2007) An evaluation of densitometric vertebral fracture assessment in men. Osteoporos Int 18(10):1405–1410PubMedCrossRefGoogle Scholar
  2. 2.
    Szulc P, Montella A, Delmas PD (2008) High bone turnover is associated with accelerated bone loss but not with increased fracture risk in men aged 50 and over: the prospective MINOS study. Ann Rheum Dis 67:1249–1255PubMedCrossRefGoogle Scholar
  3. 3.
    Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289PubMedCrossRefGoogle Scholar
  4. 4.
    Amin S, Felson DT (2001) Osteoporosis in men. Rheum Dis Clin North Am 27:19–47PubMedCrossRefGoogle Scholar
  5. 5.
    Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15:468–477PubMedCrossRefGoogle Scholar
  6. 6.
    Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 280:17497–17506PubMedCrossRefGoogle Scholar
  7. 7.
    Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859PubMedCrossRefGoogle Scholar
  8. 8.
    Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88:1523–1527PubMedCrossRefGoogle Scholar
  9. 9.
    Hall SL, Greendale GA (1998) The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study. Calcif Tissue Int 63:183–189PubMedCrossRefGoogle Scholar
  10. 10.
    Melhus H, Michaelsson K, Holmberg L, Wolk A, Ljunghall S (1999) Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res 14:129–135PubMedCrossRefGoogle Scholar
  11. 11.
    Holme I, Aastveit AH, Hammar N, Jungner I, Walldius G (2009) Uric acid and risk of myocardial infarction, stroke and congestive heart failure in 417,734 men and women in the Apolipoprotein MOrtality RISk study (AMORIS). J Intern Med 266:558–570PubMedCrossRefGoogle Scholar
  12. 12.
    Feig DI, Kang DH, Johnson RJ (2008) Uric acid and cardiovascular risk. N Engl J Med 359:1811–1821PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sautin YY, Johnson RJ (2008) Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 27:608–619PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Duan X, Ling F (2008) Is uric acid itself a player or a bystander in the pathophysiology of chronic heart failure? Med Hypotheses 70:578–581PubMedCrossRefGoogle Scholar
  15. 15.
    Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, Harrison DG, Hornig B, Drexler H (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106:3073–3078PubMedCrossRefGoogle Scholar
  16. 16.
    Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt DV, Reaveley DA, Schuler G, Coats AJ, Anker SD, Hambrecht R (2002) Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation 105:2619–2624PubMedCrossRefGoogle Scholar
  17. 17.
    Waring WS, Webb DJ, Maxwell SRJ (2001) Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J Cardiovasc Pharm 38:365–371CrossRefGoogle Scholar
  18. 18.
    Nabipour I, Sambrook PN, Blyth FM, Janu MR, Waite LM, Naganathan V, Handelsman DJ, Le Couteur DG, Cumming RG, Seibel MJ (2011) Serum uric acid is associated with bone health in older men: a cross-sectional population-based study. J Bone Miner Res 26:955–964PubMedCrossRefGoogle Scholar
  19. 19.
    Makovey J, Macara M, Chen JS, Hayward CS, March L, Seibel MJ, Sambrook PN (2013) Serum uric acid plays a protective role for bone loss in peri- and postmenopausal women: a longitudinal study. Bone 52:400–406PubMedCrossRefGoogle Scholar
  20. 20.
    Ahn SH, Lee SH, Kim BJ, Lim KH, Bae SJ, Kim EH, Kim HK, Choe JW, Koh JM, Kim GS (2013) Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women. Osteoporos Int 24:2961–2970PubMedCrossRefGoogle Scholar
  21. 21.
    Sritara C, Ongphiphadhanakul B, Chailurkit L, Yamwong S, Ratanachaiwong W, Sritara P (2013) Serum uric acid levels in relation to bone-related phenotypes in men and women. J Clin Densitom 16:336–340PubMedCrossRefGoogle Scholar
  22. 22.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMedCrossRefGoogle Scholar
  23. 23.
    Kiel D (1995) Assessing vertebral fractures. National Osteoporosis Foundation Working Group on Vertebral Fractures. J Bone Mineral Res 10:518–523Google Scholar
  24. 24.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148PubMedCrossRefGoogle Scholar
  25. 25.
    Lee YK, Ha YC, Park C, Yoo JJ, Shin CS, Koo KH (2013) Bisphosphonate use and increased incidence of subtrochanteric fracture in South Korea: results from the National Claim Registry. Osteoporos Int 24:707–711PubMedCrossRefGoogle Scholar
  26. 26.
    Choi HJ, Shin CS, Ha YC, Jang S, Jang S, Park C, Yoon HK, Lee SS (2012) Burden of osteoporosis in adults in Korea: a national health insurance database study. J Bone Miner Metab 30:54–58PubMedCrossRefGoogle Scholar
  27. 27.
    Kang HY, Yang KH, Kim YN, Moon SH, Choi WJ, Kang DR, Park SE (2010) Incidence and mortality of hip fracture among the elderly population in South Korea: a population-based study using the national health insurance claims data. BMC Public Health 10:230PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lippuner K, Johansson H, Kanis JA, Rizzoli R (2009) Remaining lifetime and absolute 10-year probabilities of osteoporotic fracture in Swiss men and women. Osteoporos Int 20:1131–1140PubMedCrossRefGoogle Scholar
  29. 29.
    Park C, Ha YC, Jang S, Jang S, Yoon HK, Lee YK (2011) The incidence and residual lifetime risk of osteoporosis-related fractures in Korea. J Bone Miner Metab 29:744–751PubMedCrossRefGoogle Scholar
  30. 30.
    Seeley DG, Browner WS, Nevitt MC, Genant HK, Scott JC, Cummings SR (1991) Which fractures are associated with low appendicular bone mass in elderly women? The Study of Osteoporotic Fractures Research Group. Ann Intern Med 115:837–842PubMedCrossRefGoogle Scholar
  31. 31.
    Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle KR, Rodriguez-Iturbe B, Herrera-Acosta J, Mazzali M (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41:1183–1190PubMedCrossRefGoogle Scholar
  32. 32.
    Lippi G, Montagnana M, Franchini M, Favaloro EJ, Targher G (2008) The paradoxical relationship between serum uric acid and cardiovascular disease. Clin Chim Acta 392:1–7PubMedCrossRefGoogle Scholar
  33. 33.
    Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412PubMedGoogle Scholar
  34. 34.
    Teng RJ, Ye YZ, Parks DA, Beckman JS (2002) Urate produced during hypoxia protects heart proteins from peroxynitrite-mediated protein nitration. Free Radic Biol Med 33:1243–1249PubMedCrossRefGoogle Scholar
  35. 35.
    Muraoka S, Miura T (2003) Inhibition by uric acid of free radicals that damage biological molecules. Pharmacol Toxicol 93:284–289PubMedCrossRefGoogle Scholar
  36. 36.
    Waring WS, Convery A, Mishra V, Shenkin A, Webb DJ, Maxwell SR (2003) Uric acid reduces exercise-induced oxidative stress in healthy adults. Clin Sci 105:425–430PubMedCrossRefGoogle Scholar
  37. 37.
    Bowman GL, Shannon J, Frei B, Kaye JA, Quinn JF (2010) Uric acid as a CNS antioxidant. J Alzheimers Dis 19:1331–1336PubMedCentralPubMedGoogle Scholar
  38. 38.
    Paganoni S, Zhang M, Quiroz Zarate A, Jaffa M, Yu H, Cudkowicz ME, Wills AM (2012) Uric acid levels predict survival in men with amyotrophic lateral sclerosis. J Neurol 259:1923–1928PubMedCrossRefGoogle Scholar
  39. 39.
    Lane NE, Parimi N, Lui L, Wise BL, Yao W, Lay YA, Cawthon PM, Orwoll E (2013) Association of serum uric acid and incident nonspine fractures in elderly men: the Osteoporotic Fractures in Men (MrOS) Study. J Bone Miner Res. doi:10.1002/jbmr.2164 Google Scholar
  40. 40.
    Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, Santora AC, Sherwood LM (2005) Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res 20:185–194PubMedCrossRefGoogle Scholar
  41. 41.
    Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, Oden A, Zethraeus N, Pfleger B, Khaltaev N (2005) Assessment of fracture risk. Osteoporos Int 16:581–589PubMedCrossRefGoogle Scholar
  42. 42.
    Kanis JA, Johansson H, Johnell O, Oden A, De Laet C, Eisman JA, Pols H, Tenenhouse A (2005) Alcohol intake as a risk factor for fracture. Osteoporos Int 16:737–742PubMedCrossRefGoogle Scholar
  43. 43.
    Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739PubMedCrossRefGoogle Scholar
  44. 44.
    De Coster C, Quan H, Finlayson A et al (2006) Identifying priorities in methodological research using ICD-9-CM and ICD-10 administrative data: report from an international consortium. BMC Health Serv Res 6:77PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int 11:669–674PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2014

Authors and Affiliations

  • B.-J. Kim
    • 1
  • S. Baek
    • 2
  • S. H. Ahn
    • 1
  • S. H. Kim
    • 3
  • M.-W. Jo
    • 4
  • S. J. Bae
    • 5
  • H.-K. Kim
    • 5
  • J. Choe
    • 5
  • G.-M. Park
    • 6
  • Y.-H. Kim
    • 6
  • S. H. Lee
    • 1
  • G. S. Kim
    • 1
  • J.-M. Koh
    • 1
  1. 1.Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
  2. 2.Department of Biostatistics, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
  3. 3.Department of Nursing, College of MedicineDankook UniversityCheonanKorea
  4. 4.Department of Preventive Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
  5. 5.Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
  6. 6.Division of Cardiology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea

Personalised recommendations