Skip to main content


Log in

Biochemical markers of bone turnover in diabetes patients—a meta-analysis, and a methodological study on the effects of glucose on bone markers

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript



This study examined whether markers of bone turnover differ between individuals with and without diabetes. Bone markers showed heterogeneity between studies and were discrepant for markers of bone creation and markers of bone degradation. Bone markers may be of lesser value in diabetes due to heterogeneity.


The aim of this meta-analysis was to compare existing literature regarding changes in bone markers among diabetics compared to healthy controls. To exclude that blood glucose levels among diabetes patients could influence the assays used for determining bone turnover markers, a methodological study was performed.


Medline at Pubmed Embase, Cinahl, Svemed+, Cochrane library, and was searched in August 2012. The studies should examine biochemical bone turnover among diabetes patients in comparison to controls in an observational design. In the methodological study, fasting blood samples were drawn from two individuals. Glucose was added to the blood samples in different concentrations and OC, CTX, and procollagen type 1 amino terminal propeptide were measured after 0, 1, 2, and 3 h.


Twenty-two papers fulfilled the criteria for the meta-analysis. From the pooled data in the meta-analysis, the bone markers osteocalcin (OC) (−1.15 ng/ml [−1.78,-0.52]) and C-terminal cross-linked telopeptide (CTX) (−0.14 ng/ml [−0.22, −0.05]) were significantly lower among diabetes patients than non-diabetes patients, however other markers did not differ. All markers displayed very high heterogeneity by I2 statistics. In the methodological study, the addition of glucose did not significantly change the bone markers neither by level of glucose nor with increasing incubation time.


The dissociative pattern of biochemical bone markers of bone formation and bone resorption present in diabetes patients is thus not caused by glucose per se but may be modulated by unknown factors associated with diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Garnero P (2009) Bone markers in osteoporosis. Curr Osteoporos Rep 7:84–90

    Article  PubMed  Google Scholar 

  2. Delmas PD (1991) What do we know about biochemical bone markers? Baillieres Clin Obstet Gynaecol 5:817–830

    Article  CAS  PubMed  Google Scholar 

  3. Starup-Linde J (2013) Diabetes, biochemical markers of bone turnover, diabetes control, and bone. Front Endocrinol (Lausanne) 4:21

    Google Scholar 

  4. Vestergaard P, Rejnmark L, Mosekilde L (2009) Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 84:45–55

    Article  CAS  PubMed  Google Scholar 

  5. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444

    Article  CAS  PubMed  Google Scholar 

  6. Szulc P, Delmas PD (2008) Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int 19:1683–1704

    Article  CAS  PubMed  Google Scholar 

  7. Clowes JA, Allen HC, Prentis DM, Eastell R, Blumsohn A (2003) Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. J Clin Endocrinol Metab 88:4867–4873

    Article  CAS  PubMed  Google Scholar 

  8. McNair P, Madsbad S, Christensen MS, Christiansen C, Faber OK, Binder C, Transbol I (1979) Bone mineral loss in insulin-treated diabetes mellitus: studies on pathogenesis. Acta Endocrinol (Copenh) 90:463–472

    CAS  Google Scholar 

  9. Raskin P, Stevenson MR, Barilla DE, Pak CY (1978) The hypercalciuria of diabetes mellitus: its amelioration with insulin. Clin Endocrinol (Oxf) 9:329–335

    Article  CAS  Google Scholar 

  10. Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, Abboud-Werner SL (2008) High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone 42:1122–1130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hamada Y, Fujii H, Fukagawa M (2009) Role of oxidative stress in diabetic bone disorder. Bone 45(Suppl 1):S35–S38

    Article  CAS  PubMed  Google Scholar 

  12. Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40:345–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Saito M, Marumo K (2013) Bone quality in diabetes. Front Endocrinol (Lausanne) 4:72

    Google Scholar 

  14. Manolagas SC, Almeida M (2007) Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605–2614

    Article  CAS  PubMed  Google Scholar 

  15. Gennari L, Merlotti D, Valenti R, Ceccarelli E, Ruvio M, Pietrini MG, Capodarca C, Franci MB, Campagna MS, Calabro A, Cataldo D, Stolakis K, Dotta F, Nuti R (2012) Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab 97:1737–1744

    Article  CAS  PubMed  Google Scholar 

  16. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

    Article  PubMed Central  PubMed  Google Scholar 

  17. Munoz-Torres M, Jodar E, Escobar-Jimenez F, Lopez-Ibarra PJ, Luna JD (1996) Bone mineral density measured by dual X-ray absorptiometry in Spanish patients with insulin-dependent diabetes mellitus. Calcif Tissue Int 58:316–319

    Article  CAS  PubMed  Google Scholar 

  18. Christensen JO, Svendsen OL (1999) Bone mineral in pre- and postmenopausal women with insulin-dependent and non-insulin-dependent diabetes mellitus. Osteoporos Int 10:307–311

    Article  CAS  PubMed  Google Scholar 

  19. Pedrazzoni M, Ciotti G, Pioli G, Girasole G, Davoli L, Palummeri E, Passeri M (1989) Osteocalcin levels in diabetic subjects. Calcif Tissue Int 45:331–336

    Article  CAS  PubMed  Google Scholar 

  20. Danielson KK, Elliott ME, Lecaire T, Binkley N, Palta M (2009) Poor glycemic control is associated with low BMD detected in premenopausal women with type 1 diabetes. Osteoporos Int 20:923–933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Neumann T, Samann A, Lodes S, Kastner B, Franke S, Kiehntopf M, Hemmelmann C, Lehmann T, Muller UA, Hein G, Wolf G (2011) Glycaemic control is positively associated with prevalent fractures but not with bone mineral density in patients with Type 1 diabetes. Diabet Med 28:872–875

    Article  CAS  PubMed  Google Scholar 

  22. Mastrandrea LD, Wactawski-Wende J, Donahue RP, Hovey KM, Clark A, Quattrin T (2008) Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care 31:1729–1735

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hampson G, Evans C, Petitt RJ, Evans WD, Woodhead SJ, Peters JR, Ralston SH (1998) Bone mineral density, collagen type 1 (alpha) 1 genotypes and bone turnover in premenopausal women with diabetes mellitus. Diabetologia 41:1314–1320

    Article  CAS  PubMed  Google Scholar 

  24. Shu A, Yin MT, Stein E, Cremers S, Dworakowski E, Ives R, Rubin MR (2012) Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int 23:635–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhou Y, Li Y, Zhang D, Wang J, Yang H (2010) Prevalence and predictors of osteopenia and osteoporosis in postmenopausal Chinese women with type 2 diabetes. Diabetes Res Clin Pract 90:261–269

    Article  PubMed  Google Scholar 

  26. Gerdhem P, Isaksson A, Akesson K, Obrant KJ (2005) Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 16:1506–1512

    Article  CAS  PubMed  Google Scholar 

  27. Dobnig H, Piswanger-Solkner JC, Roth M, Obermayer-Pietsch B, Tiran A, Strele A, Maier E, Maritschnegg P, Sieberer C, Fahrleitner-Pammer A (2006) Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab 91:3355–3363

    Article  CAS  PubMed  Google Scholar 

  28. Achemlal L, Tellal S, Rkiouak F, Nouijai A, Bezza A, Derouiche EM, Ghafir D, El Maghraoui A (2005) Bone metabolism in male patients with type 2 diabetes. Clin Rheumatol 24:493–496

    Article  PubMed  Google Scholar 

  29. Aboelasrar M, Farid S, El Maraghy M, Mohamedeen A (2010) Serum osteocalcin, zinc nutritive status and bone turnover in children and adolescents with type1 diabetes mellitus. Pediatr Diabetes 11:50

    Google Scholar 

  30. Abd El Dayem SM, El-Shehaby AM, Abd El Gafar A, Fawzy A, Salama H (2011) Bone density, body composition, and markers of bone remodeling in type 1 diabetic patients. Scand J Clin Lab Invest 71:387–393

    Article  CAS  PubMed  Google Scholar 

  31. Hamed EA, Faddan NH, Elhafeez HA, Sayed D (2011) Parathormone-25(OH)-vitamin D axis and bone status in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes 12:536–546

    Article  CAS  PubMed  Google Scholar 

  32. Valerio G, del Puente A, Esposito-del Puente A, Buono P, Mozzillo E, Franzese A (2002) The lumbar bone mineral density is affected by long-term poor metabolic control in adolescents with type 1 diabetes mellitus. Horm Res 58:266–272

    Article  CAS  PubMed  Google Scholar 

  33. Leon M, Larrodera L, Lledo G, Hawkins F (1989) Study of bone loss in diabetes mellitus type 1. Diabetes Res Clin Pract 6:237–242

    Article  CAS  PubMed  Google Scholar 

  34. Galluzzi F, Stagi S, Salti R, Toni S, Piscitelli E, Simonini G, Falcini F, Chiarelli F (2005) Osteoprotegerin serum levels in children with type 1 diabetes: a potential modulating role in bone status. Eur J Endocrinol 153:879–885

    Article  CAS  PubMed  Google Scholar 

  35. Khalil N, Sutton-Tyrrell K, Strotmeyer ES, Greendale GA, Vuga M, Selzer F, Crandall CJ, Cauley JA (2011) Menopausal bone changes and incident fractures in diabetic women: a cohort study. Osteoporos Int 22:1367–1376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Yamamoto M, Yamaguchi T, Nawata K, Yamauchi M, Sugimoto T (2012) Decreased PTH levels accompanied by low bone formation are associated with vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 97:1277–1284

    Article  CAS  PubMed  Google Scholar 

  37. Bhattoa HP, Onyeka U, Kalina E, Balogh A, Paragh G, Antal-Szalmas P, Kaplar M (2013) Bone metabolism and the 10-year probability of hip fracture and a major osteoporotic fracture using the country-specific FRAX algorithm in men over 50 years of age with type 2 diabetes mellitus: a case–control study. Clin Rheumatol 32(8):1–7

    Article  Google Scholar 

  38. Herrmann M, Seibel MJ (2008) The amino- and carboxyterminal cross-linked telopeptides of collagen type I, NTX-I and CTX-I: a comparative review. Clin Chim Acta 393:57–75

    Article  CAS  PubMed  Google Scholar 

  39. Orwoll ES, Deftos LJ (1990) Serum osteocalcin (BGP) levels in normal men: a longitudinal evaluation reveals an age-associated increase. J Bone Miner Res 5:259–262

    Article  CAS  PubMed  Google Scholar 

  40. Tsai KS, Chen JS, Hwang KM, Chieng PU, Su CT (1991) Age-related changes in vitamin D metabolites, osteocalcin, alkaline phosphatase and parathyrin in normal Chinese women in Taipei. J Formos Med Assoc 90:1033–1037

    CAS  PubMed  Google Scholar 

  41. Liu G, Peacock M (1998) Age-related changes in serum undercarboxylated osteocalcin and its relationships with bone density, bone quality, and hip fracture. Calcif Tissue Int 62:286–289

    Article  CAS  PubMed  Google Scholar 

  42. Vanderschueren D, Gevers G, Raymaekers G, Devos P, Dequeker J (1990) Sex- and age-related changes in bone and serum osteocalcin. Calcif Tissue Int 46:179–182

    Article  CAS  PubMed  Google Scholar 

  43. Seibel MJ, Lang M, Geilenkeuser WJ (2001) Interlaboratory variation of biochemical markers of bone turnover. Clin Chem 47:1443–1450

    CAS  PubMed  Google Scholar 

  44. Whitham KM, Milford-Ward A (2000) External quality assessment of bone metabolism marker assays. Initial experiences in a UK NEQAS programme. Clin Chem Lab Med 38:1121–1124

    Article  CAS  PubMed  Google Scholar 

  45. Meier C, Seibel MJ, Kraenzlin ME (2009) Use of bone turnover markers in the real world: are we there yet? J Bone Miner Res 24:386–388

    Article  PubMed  Google Scholar 

  46. Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T, Kanis JA (2011) International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49:1271–1274

    Article  CAS  PubMed  Google Scholar 

  47. Okuno S, Ishimura E, Tsuboniwa N, Norimine K, Yamakawa K, Yamakawa T, Shoji S, Mori K, Nishizawa Y, Inaba M (2012) Significant inverse relationship between serum undercarboxylated osteocalcin and glycemic control in maintenance hemodialysis patients. Osteoporos Int 24:1–8

    Google Scholar 

Download references


The authors would like to acknowledge the assistance of research librarian Ms. Edith Clausen, Department of Endocrinology and Internal Medicine, Aarhus University Hospital.


The authors have received no funding for this study.

Conflicts of interest


Author information

Authors and Affiliations


Corresponding author

Correspondence to J. Starup-Linde.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starup-Linde, J., Eriksen, S.A., Lykkeboe, S. et al. Biochemical markers of bone turnover in diabetes patients—a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int 25, 1697–1708 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: