Skip to main content

Advertisement

Log in

Comparison of two commercially available ELISAs for circulating sclerostin

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study investigates the performance and correlation of sclerostin measurements by two commercially available sclerostin ELISAs from TECOmedical and Biomedica. We found that the correlation between the results of two sclerostin assays is strong.

Introduction

Circulating sclerostin levels may provide insight into the pathophysiology of metabolic bone diseases such as osteoporosis. However, recent studies suggest that commercially available assays give different results. We compare the analytical performance of the two most used commercially available sclerostin ELISAs from TECOmedical and Biomedica.

Methods

Sclerostin levels were assessed in 20 paired serum, EDTA, and heparin plasma convenience samples from hospitalized patients. In addition, sclerostin was measured in serum samples from 34 patients with metabolic bone diseases and from 10 patients with chronic kidney disease (CKD). Samples from three healthy donors were used to determine stability and intra- and inter- assay precision.

Results

The average serum sclerostin concentration of all patients (n = 64) was 0.713 ± 0.58 ng/mL with the Biomedica assay and 0.734 ± 0.43 ng/mL with the TECO assay (p < 0.05). The results correlated strongly (r = 0.9; p < 0.0001), with Passing-Bablok regression showing a linear relationship but with a slight systematic and proportional difference between both assays. Sclerostin levels were about 30 % higher in plasma than in serum for both assays, while no significant difference was seen between EDTA and heparin plasma. Intra- and inter- precision were <10 % for TECO and <20 % for Biomedica. Samples were stable for up to three freeze-thaw cycles with both assays.

Conclusions

The two commercially available ELISAs for measuring circulating levels of sclerostin are comparable. However, given the small but statistically significant systematic and proportional differences between both assays, results and reference ranges will be assay-specific. Results will also be specific to serum or plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199(6):805–814. doi:10.1084/jem.20031454

    Article  PubMed Central  PubMed  Google Scholar 

  2. Drake MT, Srinivasan B, Modder UI, Peterson JM, McCready LK, Riggs BL, Dwyer D, Stolina M, Kostenuik P, Khosla S (2010) Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab 95(11):5056–5062. doi:10.1210/jc.2010-0720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kaji H, Imanishi Y, Sugimoto T, Seino S (2011) Comparisons of serum sclerostin levels among patients with postmenopausal osteoporosis, primary hyperparathyroidism and osteomalacia. Exp Clin Endocrinol Diabetes 119(7):440–444. doi:10.1055/s-0031-1275661

    Article  CAS  PubMed  Google Scholar 

  4. Costa AG, Cremers S, Rubin MR, McMahon DJ, Sliney J Jr, Lazaretti-Castro M, Silverberg SJ, Bilezikian JP (2011) Circulating sclerostin in disorders of parathyroid gland function. J Clin Endocrinol Metab 96(12):3804–3810. doi:10.1210/jc.2011-0566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gennari L, Merlotti D, Valenti R, Ceccarelli E, Ruvio M, Pietrini MG, Capodarca C, Franci MB, Campagna MS, Calabro A, Cataldo D, Stolakis K, Dotta F, Nuti R (2012) Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab 97(5):1737–1744. doi:10.1210/jc.2011-2958

    Article  CAS  PubMed  Google Scholar 

  6. Thambiah S, Roplekar R, Manghat P, Fogelman I, Fraser WD, Goldsmith D, Hampson G (2012) Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcif Tissue Int 90(6):473–480. doi:10.1007/s00223-012-9595-4

    Article  CAS  PubMed  Google Scholar 

  7. Voskaridou E, Christoulas D, Plata E, Bratengeier C, Anastasilakis AD, Komninaka V, Kaliontzi D, Gkotzamanidou M, Polyzos SA, Dimopoulou M, Terpos E (2012) High circulating sclerostin is present in patients with thalassemia-associated osteoporosis and correlates with bone mineral density. Horm Metab Res 44(12):909–913. doi:10.1055/s-0032-1312618

    Article  CAS  PubMed  Google Scholar 

  8. Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, Zwart SR, Smith SM (2012) Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab 97(9):E1736–E1740. doi:10.1210/jc.2012-1579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gaudio A, Privitera F, Battaglia K, Torrisi V, Sidoti MH, Pulvirenti I, Canzonieri E, Tringali G, Fiore CE (2012) Sclerostin levels associated with inhibition of the Wnt/beta-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J Clin Endocrinol Metab 97(10):3744–3750. doi:10.1210/jc.2012-1901

    Article  CAS  PubMed  Google Scholar 

  10. Ardawi MS, Rouzi AA, Qari MH (2012) Physical activity in relation to serum sclerostin, insulin-like growth factor-1, and bone turnover markers in healthy premenopausal women: a cross-sectional and a longitudinal study. J Clin Endocrinol Metab 97(10):3691–3699. doi:10.1210/jc.2011-3361

    Article  CAS  PubMed  Google Scholar 

  11. Ardawi MS, Akhbar DH, Alshaikh A, Ahmed MM, Qari MH, Rouzi AA, Ali AY, Abdulrafee AA, Saeda MY (2013) Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone 56(2):355–362. doi:10.1016/j.bone.2013.06.029

    Article  CAS  PubMed  Google Scholar 

  12. McNulty M, Singh RJ, Li X, Bergstralh EJ, Kumar R (2011) Determination of serum and plasma sclerostin concentrations by enzyme-linked immunoassays. J Clin Endocrinol Metab 96(7):E1159–E1162. doi:10.1210/jc.2011-0254

    Article  PubMed Central  PubMed  Google Scholar 

  13. Garnero P, Sornay-Rendu E, Munoz F, Borel O, Chapurlat RD (2013) Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int 24(2):489–494. doi:10.1007/s00198-012-1978-x

    Article  CAS  PubMed  Google Scholar 

  14. van Lierop AH, van der Eerden AW, Hamdy NA, Hermus AR, den Heijer M, Papapoulos SE (2012) Circulating sclerostin levels are decreased in patients with endogenous hypercortisolism and increase after treatment. J Clin Endocrinol Metab 97(10):E1953–E1957. doi:10.1210/jc.2012-2218

    Article  PubMed Central  PubMed  Google Scholar 

  15. Durosier C, van Lierop A, Ferrari S, Chevalley T, Papapoulos S, Rizzoli R (2013) Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J Clin Endocrinol Metab 98(9):3873–3883. doi:10.1210/jc.2013-2113

    Article  CAS  PubMed  Google Scholar 

  16. Weidauer SE, Schmieder P, Beerbaum M, Schmitz W, Oschkinat H, Mueller TD (2009) NMR structure of the Wnt modulator protein Sclerostin. Biochem Biophys Res Commun 380(1):160–165. doi:10.1016/j.bbrc.2009.01.062

    Article  CAS  PubMed  Google Scholar 

  17. Veverka V, Henry AJ, Slocombe PM, Ventom A, Mulloy B, Muskett FW, Muzylak M, Greenslade K, Moore A, Zhang L, Gong J, Qian X, Paszty C, Taylor RJ, Robinson MK, Carr MD (2009) Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem 284(16):10890–10900. doi:10.1074/jbc.M807994200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lierop AH, Hamdy NAT, Bezooijen RL, Löwik CW, Papapoulos SE (2011) The role of sclerostin in the pathophysiology of sclerosing bone dysplasias. Clin Rev Bone Miner Metab 10(2):108–116. doi:10.1007/s12018-011-9123-5

    Article  Google Scholar 

  19. Souberbielle JC, Friedlander G, Cormier C (2006) Practical considerations in PTH testing. Clin Chim Acta 366(1–2):81–89. doi:10.1016/j.cca.2005.10.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant Number UL1 TR000040. We gratefully thank Drs. Shonni Silverberg, Marcella Walker, Mishaela Rubin, Emily Stein, and Thomas Nickolas for contributing de-identified serum samples from their ongoing studies for this study.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, A.G., Cremers, S., Dworakowski, E. et al. Comparison of two commercially available ELISAs for circulating sclerostin. Osteoporos Int 25, 1547–1554 (2014). https://doi.org/10.1007/s00198-014-2635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2635-3

Keywords

Navigation