Skip to main content

Advertisement

Log in

Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Computed tomography and finite element modeling were used to assess bone mineral and stiffness loss at the knee following acute spinal cord injury (SCI). Marked bone mineral loss was observed from a combination of trabecular and endocortical resorption. Reductions in stiffness were 2-fold greater than reductions in integral bone mineral.

Introduction

SCI is associated with a rapid loss of bone mineral and an increased rate of fragility fracture. The large majority of these fractures occur around regions of the knee. Our purpose was to quantify changes to bone mineral, geometry, strength indices, and stiffness at the distal femur and proximal tibia in acute SCI.

Methods

Quantitative computed tomography (QCT) and patient-specific finite element analysis were performed on 13 subjects with acute SCI at serial time points separated by a mean of 3.5 months (range 2.6–4.8 months). Changes in bone mineral content (BMC) and volumetric bone mineral density (vBMD) were quantified for integral, trabecular, and cortical bone at epiphyseal, metaphyseal, and diaphyseal regions of the distal femur and proximal tibia. Changes in bone volumes, cross-sectional areas, strength indices and stiffness were also determined.

Results

Bone mineral loss was similar in magnitude at the distal femur and proximal tibia. Reductions were most pronounced at epiphyseal regions, ranging from 3.0 % to 3.6 % per month for integral BMC (p < 0.001) and from 2.8 % to 3.4 % per month (p < 0.001) for integral vBMC. Trabecular BMC decreased by 3.1–4.4 %/month (p < 0.001) and trabecular vBMD by 2.7–4.7 %/month (p < 0.001). A 3.8–5.4 %/month reduction was observed for cortical BMC (p < 0.001); the reduction in cortical vBMD was noticeably lower (0.6–0.8 %/month; p ≤ 0.01). The cortical bone loss occurred primarily through endosteal resorption, and reductions in strength indices and stiffness were some 2-fold greater than reductions in integral bone mineral.

Conclusions

These findings highlight the need for therapeutic interventions targeting both trabecular and endocortical bone mineral preservation in acute SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF (2000) Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 27:305–309

    Article  CAS  PubMed  Google Scholar 

  2. Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zach G, Lippuner K (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189. doi:10.1007/s00198-003-1529-6

    Article  PubMed  Google Scholar 

  3. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192. doi:10.1007/s00198-005-2028-8

    Article  PubMed  Google Scholar 

  4. Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20:330–335

    Article  CAS  PubMed  Google Scholar 

  5. Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, Schiessl H (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34:869–880. doi:10.1016/j.bone.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  6. Bravo-Payno P, Esclarin A, Arzoz T, Arroyo O, Labarta C (1992) Incidence and risk factors in the appearance of heterotopic ossification in spinal cord injury. Paraplegia 30:740–745. doi:10.1038/sc.1992.142

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, DeVivo MJ, Roseman JM (2000) Current trend and risk factors for kidney stones in persons with spinal cord injury: a longitudinal study. Spinal Cord 38:346–353

    Article  CAS  PubMed  Google Scholar 

  8. Vestergaard P, Krogh K, Rejnmark L, Mosekilde L (1998) Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 36:790–796

    Article  CAS  PubMed  Google Scholar 

  9. Garland DE, Adkins RH (2001) Bone loss at the knee in spinal cord injury. Top Spinal Cord Inj Rehabil 6:37–46

    Article  Google Scholar 

  10. Rogers T, Shokes LK, Woodworth PH (2005) Pathologic extremity fracture care in spinal cord injury. Top Spinal Cord Inj Rehabil 11:70–78

    Article  Google Scholar 

  11. Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20:385–392. doi:10.1007/s00198-008-0671-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Biering-Sorensen F, Bohr HH, Schaadt OP (1988) Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia 26:293–301

    Article  CAS  PubMed  Google Scholar 

  13. Garland DE, Stewart CA, Adkins RH, Hu SS, Rosen C, Liotta FJ, Weinstein DA (1992) Osteoporosis after spinal cord injury. J Orthop Res 10:371–378. doi:10.1002/jor.1100100309

    Article  CAS  PubMed  Google Scholar 

  14. Dudley-Javoroski S, Shields RK (2010) Longitudinal changes in femur bone mineral density after spinal cord injury: effects of slice placement and peel method. Osteoporos Int 21:985–995. doi:10.1007/s00198-009-1044-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Frotzler A, Berger M, Knecht H, Eser P (2008) Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT). Bone 43:549–555. doi:10.1016/j.bone.2008.05.006

    Article  PubMed  Google Scholar 

  16. Rittweger J, Goosey-Tolfrey VL, Cointry G, Ferretti JL (2010) Structural analysis of the human tibia in men with spinal cord injury by tomographic (pQCT) serial scans. Bone 47:511–518. doi:10.1016/j.bone.2010.05.025

    Article  PubMed  Google Scholar 

  17. Edwards WB, Schnitzer TJ, Troy KL (2013) Bone mineral loss at the proximal femur in acute spinal cord injury. Osteoporos Int. doi:10.1007/s00198-013-2323-8

    Google Scholar 

  18. Edwards WB, Schnitzer TJ, Troy KL (2013) Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT. J Biomech. doi:10.1016/j.jbiomech.2013.04.016

    PubMed  Google Scholar 

  19. Winter DA (1990) Biomechanics and motor control of human movement. John Wiley & Sons, New York

    Google Scholar 

  20. Marshall LM, Lang TF, Lambert LC, Zmuda JM, Ensrud KE, Orwoll ES, Osteoporotic Fractures in Men (MrOS) Research Group (2006) Dimensions and volumetric BMD of the proximal femur and their relation to age among older U.S. men. J Bone Miner Res 21:1197–1206. doi:10.1359/jbmr.060506

    Article  PubMed  Google Scholar 

  21. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012. doi:10.1359/JBMR.040307

    Article  PubMed  Google Scholar 

  22. Rho JY, Hobatho MC, Ashman RB (1995) Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys 17:347–355

    Article  CAS  PubMed  Google Scholar 

  23. Dalstra M, Huiskes R, Odgaard A, van Erning L (1993) Mechanical and textural properties of pelvic trabecular bone. J Biomech 26:523–535

    Article  CAS  PubMed  Google Scholar 

  24. Keyak JH, Rossi SA, Jones KA, Les CM, Skinner HB (2001) Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys 23:657–664

    Article  CAS  PubMed  Google Scholar 

  25. Rho JY (1996) An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics 34:777–783

    Article  CAS  PubMed  Google Scholar 

  26. Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS (2008) Experimental validation of a finite element model of a human cadaveric tibia. J Biomech Eng 130:031016. doi:10.1115/1.2913335

    Article  PubMed  Google Scholar 

  27. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020

    Article  CAS  PubMed  Google Scholar 

  28. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750

    Article  PubMed  Google Scholar 

  29. Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D (2008) The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng 130:011011. doi:10.1115/1.2838032

    Article  PubMed  Google Scholar 

  30. Ito M, Matsumoto T, Enomoto H, Tsurusaki K, Hayashi K (1999) Effect of nonweight bearing on tibial bone density measured by QCT in patients with hip surgery. J Bone Miner Metab 17:45–50

    Article  CAS  PubMed  Google Scholar 

  31. Rittweger J, Simunic B, Bilancio G, De Santo NG, Cirillo M, Biolo G, Pisot R, Eiken O, Mekjavic IB, Narici M (2009) Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone 44:612–618. doi:10.1016/j.bone.2009.01.001

    Article  PubMed  Google Scholar 

  32. Eser P, Frotzler A, Zehnder Y, Denoth J (2005) Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 86:498–504. doi:10.1016/j.apmr.2004.09.006

    Article  PubMed  Google Scholar 

  33. Ausk BJ, Gross TS (2012) Metaphyseal and diaphyseal bone loss following transient muscle paralysis are distinct osteoclastogenic events. Proceedings of the American Society of Biomechanics 36th Annual Meeting; 2012 Aug 15–18, Gainesville, FL. http://www.asbweb.org/conferences/2012/abstracts/200.pdf

  34. Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44:751–764

    Article  CAS  PubMed  Google Scholar 

  35. Centers for Disease Control and Prevention (2010) Spinal cord injury (SCI): fact sheet. http://www.cdc.gov/traumaticbraininjury/scifacts.html. Accessed 6 September 2012

Download references

Acknowledgments

The authors thank Danielle Barkema, M.S., Meghan Lipowski, and Narina Simonian for their help with subject recruitment and data collection. This project was funded in part by an investigator-initiated research grant from Merck & Co, Inc. to TJS and KLT.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. B. Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, W.B., Schnitzer, T.J. & Troy, K.L. Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury. Osteoporos Int 25, 1005–1015 (2014). https://doi.org/10.1007/s00198-013-2557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2557-5

Keywords

Navigation