Abstract
Summary
The relation of omega 3 fatty acids (n-3 FA) with bone mineral density (BMD) was assessed among adults >60 years; NHANES data (2005–2008). The association of dietary n-3 FA with measures of hip BMD was equivocal, but n-3 FA supplement use was significantly associated with higher spine BMD—a finding that deserves further study.
Introduction
Associations between polyunsaturated fatty acids and bone mineral density are not well understood.
Purpose
To evaluate the cross-sectional relation between dietary omega 3 fatty acid intake (specifically docosahexaenoic acid, eicosapentaenoic acid, and octadecatetraenoic) and BMD at the hip and spine among older adults.
Methods
Omega 3 FA intake (g/day) was assessed from two 24-h recalls using the National Health and Nutrition Examination Survey (NHANES, in 2005–2008); and omega 3 FA supplement use (yes/no) via questionnaire. Multivariable regression models were developed to explain variance in femoral neck, total femur, and lumbar spine BMD among 2,125 men and women over 60 years.
Results
Mean age was 70 years. In adjusted models, dietary omega 3 FA were marginally associated with greater femoral neck BMD (p = 0.0505), but not with total femur BMD (p = 0.95) or lumbar spine BMD (p = 0.74). Omega 3 supplement use was significantly positively associated with lumbar spine BMD (p = 0.005) but not with femoral neck or total femur BMD.
Conclusions
Dietary intakes of omega 3 FA were marginally associated with femoral neck BMD; however, omega 3 supplement use was significantly associated with higher lumbar spine BMD in older adults. These results emphasize the need for assessment of total omega 3 intakes (diet and supplements) to provide a greater range of intake and a more accurate picture of the relation between omega 3 FA and BMD.
This is a preview of subscription content, access via your institution.
References
- 1.
Bone Health and Osteoporosis: A Report of the Surgeon General. (2004) Reports of the Surgeon General. Rockville (MD)
- 2.
Leibson CL, Tosteson AN, Gabriel SE, Ransom JE, Melton LJ (2002) Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc 50(10):1644–1650
- 3.
Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475. doi:10.1359/jbmr.061113
- 4.
Kris-Etherton PM, Taylor DS, Yu-Poth S, Huth P, Moriarty K, Fishell V, Hargrove RL, Zhao G, Etherton TD (2000) Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 71(1 Suppl):179S–188S
- 5.
Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233(6):674–688. doi:10.3181/0711-MR-311
- 6.
Weiss LA, Barrett-Connor E, von Muhlen D (2005) Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study. Am J Clin Nutr 81(4):934–938
- 7.
Shen CL, Peterson J, Tatum OL, Dunn DM (2008) Effect of long-chain n-3 polyunsaturated fatty acid on inflammation mediators during osteoblastogenesis. J Med Food 11(1):105–110. doi:10.1089/jmf.2007.540
- 8.
Kettler DB (2001) Can manipulation of the ratios of essential fatty acids slow the rapid rate of postmenopausal bone loss? Alternative Med Rev 6(1):61–77
- 9.
Watkins BA, Li Y, Lippman HE, Feng S (2003) Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukot Essent Fatty Acids 68(6):387–398
- 10.
Mangano KM, Sahni S, Kerstetter JE, Kenny AM, Hannan MT (2013) Polyunsaturated fatty acids and their relation with bone and muscle health in adults. Curr Osteoporos Rep. doi:10.1007/s11914-013-0149-0
- 11.
Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL (2011) Dietary intakes of arachidonic acid and alpha-linolenic acid are associated with reduced risk of hip fracture in older adults. J Nutr 141(6):1146–1153. doi:10.3945/jn.110.133728
- 12.
Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL (2011) Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 93(5):1142–1151. doi:10.3945/ajcn.110.005926
- 13.
Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL (2012) Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hip bone mineral density and hip fracture in older adults: the Framingham Osteoporosis Study. J Bone Miner Res 27(5):1222–1230. doi:10.1002/jbmr.1581
- 14.
Orchard TS, Cauley JA, Frank GC, Neuhouser ML, Robinson JG, Snetselaar L, Tylavsky F, Wactawski-Wende J, Young AM, Lu B, Jackson RD (2010) Fatty acid consumption and risk of fracture in the Women's Health Initiative. Am J Clin Nutr 92(6):1452–1460. doi:10.3945/ajcn.2010.29955
- 15.
Virtanen JK, Mozaffarian D, Cauley JA, Mukamal KJ, Robbins J, Siscovick DS (2010) Fish consumption, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study. J Bone Miner Res 25(9):1972–1979. doi:10.1002/jbmr.87
- 16.
Virtanen JK, Mozaffarian D, Willett WC, Feskanich D (2012) Dietary intake of polyunsaturated fatty acids and risk of hip fracture in men and women. Osteoporos Int. doi:10.1007/s00198-012-1903-3
- 17.
Jarvinen R, Tuppurainen M, Erkkila AT, Penttinen P, Karkkainen M, Salovaara K, Jurvelin JS, Kroger H (2011) Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr. doi:10.1038/ejcn.2011.188
- 18.
Whelan J (2009) Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J Nutr 139(1):5–10. doi:10.3945/jn.108.094268
- 19.
National Health and Nutrition Examination General Data Release Documentation. Centers for Disease Control and Prevention and National Center for Health Statistics website. http://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/general_data_release_doc_05_06.pdf. Accessed March 13 2012
- 20.
Centers for Disease Control and Prevention Prevention; National Health and Nutrition Examination Survey Participants. http://www.cdc.gov/nchs/nhanes/genetics/genetic_participants.htm. Accessed September 12 2012
- 21.
Krall EA, Dawson-Hughes B, Garvey AJ, Garcia RI (1997) Smoking, smoking cessation, and tooth loss. J Dent Res 76(10):1653–1659
- 22.
Blanton CA, Moshfegh AJ, Baer DJ, Kretsch MJ (2006) The USDA automated multiple-pass method accurately estimates group total energy and nutrient intake. J Nutr 136(10):2594–2599
- 23.
Conway JM, Ingwersen LA, Moshfegh AJ (2004) Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J Am Diet Assoc 104(4):595–603. doi:10.1016/j.jada.2004.01.007
- 24.
Whelan J, Gouffon J, Zhao Y (2012) Effects of dietary stearidonic acid on biomarkers of lipid metabolism. J Nutr 142(3):630S–634S. doi:10.3945/jn.111.149138
- 25.
Survey NHaE (January 2007) Dual energy X-ray absorptiometry (DXA) procedures manual.
- 26.
Trumbo P, Schlicker S, Yates AA, Poos M, Food, Nutrition Board of the Institute of Medicine TNA (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102(11):1621–1630
- 27.
Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2005. Washington, DC
- 28.
World Health Organization (2003) Population nutrient intake goals for preventing diet-related chronic diseases: Geneva, Switzerland
- 29.
Zalloua PA, Hsu YH, Terwedow H, Zang T, Wu D, Tang G, Li Z, Hong X, Azar ST, Wang B, Bouxsein ML, Brain J, Cummings SR, Rosen CJ, Xu X (2007) Impact of seafood and fruit consumption on bone mineral density. Maturitas 56(1):1–11. doi:10.1016/j.maturitas.2006.05.001
- 30.
Hogstrom M, Nordstrom P, Nordstrom A (2007) n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr 85(3):803–807
- 31.
Rousseau JH, Kleppinger A, Kenny AM (2009) Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function. J Am Geriatr Soc 57(10):1781–1788. doi:10.1111/j.1532-5415.2008.01870.x
- 32.
Kris-Etherton PM, Harris WS, Appel LJ, American Heart Association. Nutrition C (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106(21):2747–2757
- 33.
Terano T (2001) Effect of omega 3 polyunsaturated fatty acid ingestion on bone metabolism and osteoporosis. World Rev Nutr Diet 88:141–147
- 34.
Bassey EJ, Littlewood JJ, Rothwell MC, Pye DW (2000) Lack of effect of supplementation with essential fatty acids on bone mineral density in healthy pre- and postmenopausal women: two randomized controlled trials of Efacal v. calcium alone. Br J Nutr 83(6):629–635
- 35.
Appleton KM, Fraser WD, Rogers PJ, Ness AR, Tobias JH (2010) Supplementation with a low-moderate dose of n-3 long-chain PUFA has no short-term effect on bone resorption in human adults. Br J Nutr:1–5. doi:10.1017/S0007114510004861
- 36.
Kang JX, Wang J, Wu L, Kang ZB (2004) Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature 427(6974):504. doi:10.1038/427504a
- 37.
Rahman MM, Bhattacharya A, Banu J, Kang JX, Fernandes G (2009) Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. J Cell Mol Med 13(8B):1833–1844. doi:10.1111/j.1582-4934.2009.00649.x
- 38.
Watkins BA, Shen CL, Allen KG, Seifert MF (1996) Dietary (n-3) and (n-6) polyunsaturates and acetylsalicylic acid alter ex vivo PGE2 biosynthesis, tissue IGF-I levels, and bone morphometry in chicks. J Bone Miner Res 11(9):1321–1332. doi:10.1002/jbmr.5650110917
- 39.
Watkins BA, Li Y, Allen KG, Hoffmann WE, Seifert MF (2000) Dietary ratio of (n-6)/(n-3) polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats. J Nutr 130(9):2274–2284
- 40.
Kruger MC, Coetzee M, Haag M, Weiler H (2010) Long-chain polyunsaturated fatty acids: selected mechanisms of action on bone. Prog Lipid Res 49(4):438–449. doi:10.1016/j.plipres.2010.06.002
- 41.
Haubrock J, Nothlings U, Volatier JL, Dekkers A, Ocke M, Harttig U, Illner AK, Knuppel S, Andersen LF, Boeing H, European Food Consumption Validation C (2011) Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J Nutr 141(5):914–920. doi:10.3945/jn.109.120394
- 42.
Tooze JA, Midthune D, Dodd KW, Freedman LS, Krebs-Smith SM, Subar AF, Guenther PM, Carroll RJ, Kipnis V (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106(10):1575–1587. doi:10.1016/j.jada.2006.07.003
Acknowledgments
The authors’ responsibilities were as follows: KMM, SJW, and JEK were responsible for the overall design and execution of the study; KMM and SJW for the statistical analysis and management of the data. All authors were involved in the study design, analysis of the data, or writing of the manuscript. None of the authors have a conflict of interest. This work was funded by the Nutrition Pilot Grant Program of the Patrick and Catherine Weldon Donaghue Medical Research Foundation. Support for data management and analysis was provided by the Lowell P. Weicker, Jr. General Clinical Research Center at the University of Connecticut Health Center (NIH/NCRR M01-R006192).
Conflict of interests
None.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mangano, K.M., Kerstetter, J.E., Kenny, A.M. et al. An investigation of the association between omega 3 FA and bone mineral density among older adults: results from the National Health and Nutrition Examination Survey years 2005–2008. Osteoporos Int 25, 1033–1041 (2014). https://doi.org/10.1007/s00198-013-2501-8
Received:
Accepted:
Published:
Issue Date:
Keywords
- Bone mineral density
- NHANES
- Omega-3 fatty acids
- Polyunsaturated fatty acids