Osteoporosis International

, Volume 25, Issue 2, pp 559–566 | Cite as

The associations between QCT-based vertebral bone measurements and prevalent vertebral fractures depend on the spinal locations of both bone measurement and fracture

  • D. E. Anderson
  • S. Demissie
  • B. T. Allaire
  • A. G. Bruno
  • D. L. Kopperdahl
  • T. M. Keaveny
  • D. P. Kiel
  • M. L. Bouxsein
Original Article



We examined how spinal location affects the relationships between quantitative computed tomography (QCT)-based bone measurements and prevalent vertebral fractures. Upper spine (T4–T10) fractures appear to be more strongly related to bone measures than lower spine (T11–L4) fractures, while lower spine measurements are at least as strongly related to fractures as upper spine measurements.


Vertebral fracture (VF), a common injury in older adults, is most prevalent in the mid-thoracic (T7–T8) and thoracolumbar (T12–L1) areas of the spine. However, measurements of bone mineral density (BMD) are typically made in the lumbar spine. It is not clear how the associations between bone measurements and VFs are affected by the spinal locations of both bone measurements and VF.


A community-based case–control study includes 40 cases with moderate or severe prevalent VF and 80 age- and sex-matched controls. Measures of vertebral BMD, strength (estimated by finite element analysis), and factor of risk (load:strength ratio) were determined based on QCT scans at the L3 and T10 vertebrae. Associations were determined between bone measures and prevalent VF occurring at any location, in the upper spine (T4–T10), or in the lower spine (T11–L4).


Prevalent VF at any location was significantly associated with bone measures, with odds ratios (ORs) generally higher for measurements made at L3 (ORs = 1.9–3.9) than at T10 (ORs = 1.5–2.4). Upper spine fracture was associated with these measures at both T10 and L3 (ORs = 1.9–8.2), while lower spine fracture was less strongly associated (ORs = 1.0–2.4) and only reached significance for volumetric BMD measures at L3.


Closer proximity between the locations of bone measures and prevalent VF does not strengthen associations between bone measures and fracture. Furthermore, VF etiology may vary by region, with VFs in the upper spine more strongly related to skeletal fragility.


Biomechanics Bone strength Finite element analysis Fracture prediction Osteoporosis 


  1. 1.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475. doi:10.1359/jbmr.061113 PubMedCrossRefGoogle Scholar
  2. 2.
    Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129(5):1000–1011PubMedGoogle Scholar
  3. 3.
    Melton LJ 3rd, Lane AW, Cooper C, Eastell R, O’Fallon WM, Riggs BL (1993) Prevalence and incidence of vertebral deformities. Osteoporos Int 3(3):113–119PubMedCrossRefGoogle Scholar
  4. 4.
    Kado DM, Huang MH, Karlamangla AS, Cawthon P, Katzman W, Hillier TA, Ensrud K, Cummings SR (2013) Factors associated with kyphosis progression in older women: 15 years’ experience in the study of osteoporotic fractures. J Bone Miner Res 28(1):179–187. doi:10.1002/jbmr.1728 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Lombardi I Jr, Oliveira LM, Mayer AF, Jardim JR, Natour J (2005) Evaluation of pulmonary function and quality of life in women with osteoporosis. Osteoporos Int 16(10):1247–1253. doi:10.1007/s00198-005-1834-3 PubMedCrossRefGoogle Scholar
  6. 6.
    Schlaich C, Minne HW, Bruckner T, Wagner G, Gebest HJ, Grunze M, Ziegler R, Leidig-Bruckner G (1998) Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 8(3):261–267PubMedCrossRefGoogle Scholar
  7. 7.
    Hasserius R, Karlsson MK, Jonsson B, Redlund-Johnell I, Johnell O (2005) Long-term morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly—a 12- and 22-year follow-up of 257 patients. Calcif Tissue Int 76:235–242PubMedCrossRefGoogle Scholar
  8. 8.
    Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, Segal M, Genant HK, Cummings SR (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128(10):793–800PubMedCrossRefGoogle Scholar
  9. 9.
    Pluijm SM, Tromp AM, Smit JH, Deeg DJ, Lips P (2000) Consequences of vertebral deformities in older men and women. J Bone Miner Res 15(8):1564–1572. doi:10.1359/jbmr.2000.15.8.1564 PubMedCrossRefGoogle Scholar
  10. 10.
    Salaffi F, Cimmino MA, Malavolta N, Carotti M, Di Matteo L, Scendoni P, Grassi W (2007) The burden of prevalent fractures on health-related quality of life in postmenopausal women with osteoporosis: the IMOF study. J Rheumatol 34(7):1551–1560PubMedGoogle Scholar
  11. 11.
    Hasserius R, Karlsson MK, Nilsson BE, Redlund-Johnell I, Johnell O (2003) Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos Int 14(1):61–68PubMedCrossRefGoogle Scholar
  12. 12.
    Kado DM, Duong T, Stone KL, Ensrud KE, Nevitt MC, Greendale GA, Cummings SR (2003) Incident vertebral fractures and mortality in older women: a prospective study. Osteoporos Int 14:589–594PubMedCrossRefGoogle Scholar
  13. 13.
    Delmas PD, van de Langerijt L, Watts NB, Eastell R, Genant H, Grauer A, Cahall DL (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 20(4):557–563. doi:10.1359/JBMR.041214 PubMedCrossRefGoogle Scholar
  14. 14.
    Ismail AA, Cooper C, Felsenberg D, Varlow J, Kanis JA, Silman AJ, O’Neill TW (1999) Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group. Osteoporos Int 9(3):206–213PubMedCrossRefGoogle Scholar
  15. 15.
    Van der Klift M, De Laet CE, McCloskey EV, Hofman A, Pols HA (2002) The incidence of vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res 17(6):1051–1056. doi:10.1359/jbmr.2002.17.6.1051 PubMedCrossRefGoogle Scholar
  16. 16.
    Nevitt MC, Cummings SR, Stone KL, Palermo L, Black DM, Bauer DC, Genant HK, Hochberg MC, Ensrud KE, Hillier TA, Cauley JA (2005) Risk factors for a first-incident radiographic vertebral fracture in women > or = 65 years of age: the study of osteoporotic fractures. J Bone Miner Res 20(1):131–140PubMedCrossRefGoogle Scholar
  17. 17.
    Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18(11):1947–1954. doi:10.1359/jbmr.2003.18.11.1947 PubMedCrossRefGoogle Scholar
  18. 18.
    Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15(4):721–739PubMedCrossRefGoogle Scholar
  19. 19.
    Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285(3):320–323PubMedCrossRefGoogle Scholar
  20. 20.
    Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34(1):195–202PubMedCrossRefGoogle Scholar
  21. 21.
    Schuit S, van der Klift M, Weel A, De Laet C, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen J, Pols H (2006) Corridendum to "Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study". Bone 38:603CrossRefGoogle Scholar
  22. 22.
    Nevitt MC, Ross PD, Palermo L, Musliner T, Genant HK, Thompson DE (1999) Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. The Fracture Intervention Trial Research Group. Bone 25(5):613–619PubMedCrossRefGoogle Scholar
  23. 23.
    Melton LJ 3rd, Chao EYS, Lane JM (1988) Biomechanical aspects of fractures. In: Riggs BL, Melton LJ 3rd (eds) Osteoporosis: etiology, diagnosis and management. Raven, New York, pp 111–132Google Scholar
  24. 24.
    Cooper C, O’Neill T, Silman A (1993) The epidemiology of vertebral fractures. European Vertebral Osteoporosis Study Group. Bone 14(Suppl 1):S89–97PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffmann U, Massaro JM, Fox CS, Manders E, O’Donnell CJ (2008) Defining normal distributions of coronary artery calcium in women and men (from the Framingham Heart Study). Am J Cardiol 102(9):1136–1141. doi:10.1016/j.amjcard.2008.06.038 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148. doi:10.1002/jbmr.5650080915 PubMedCrossRefGoogle Scholar
  27. 27.
    Samelson EJ, Christiansen BA, Demissie S, Broe KE, Zhou Y, Meng CA, Yu W, Cheng X, O’Donnell CJ, Hoffmann U, Genant HK, Kiel DP, Bouxsein ML (2011) Reliability of vertebral fracture assessment using multidetector CT lateral scout views: the Framingham Osteoporosis Study. Osteoporos Int 22(4):1123–1131. doi:10.1007/s00198-010-1290-6 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Samelson EJ, Christiansen BA, Demissie S, Broe KE, Louie-Gao Q, Cupples LA, Roberts BJ, Manoharam R, D’Agostino J, Lang T, Kiel DP, Bouxsein ML (2012) QCT measures of bone strength at the thoracic and lumbar spine: the Framingham Study. J Bone Miner Res 27(3):654–663. doi:10.1002/jbmr.1482 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lang TF, Li J, Harris ST, Genant HK (1999) Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr 23(1):130–137PubMedCrossRefGoogle Scholar
  30. 30.
    Christiansen BA, Kopperdahl DL, Kiel DP, Keaveny TM, Bouxsein ML (2011) Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J Bone Miner Res 26(5):974–983. doi:10.1002/jbmr.287 PubMedCrossRefGoogle Scholar
  31. 31.
    Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM, Keaveny TM (2012) Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res 27(4):808–816. doi:10.1002/jbmr.1539 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4):744–750PubMedCrossRefGoogle Scholar
  33. 33.
    Bouxsein ML, Melton LJ 3rd, Riggs BL, Muller J, Atkinson EJ, Oberg AL, Robb RA, Camp JJ, Rouleau PA, McCollough CH, Khosla S (2006) Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J Bone Miner Res 21(9):1475–1482PubMedCrossRefGoogle Scholar
  34. 34.
    Iyer S, Christiansen BA, Roberts BJ, Valentine MJ, Manoharan RK, Bouxsein ML (2010) A biomechanical model for estimating loads on thoracic and lumbar vertebrae. Clin Biomech (Bristol, Avon) 25(9):853–858. doi:10.1016/j.clinbiomech.2010.06.010 CrossRefGoogle Scholar
  35. 35.
    Leucht P, Fischer K, Muhr G, Mueller EJ (2009) Epidemiology of traumatic spine fractures. Injury 40(2):166–172. doi:10.1016/j.injury.2008.06.040 PubMedCrossRefGoogle Scholar
  36. 36.
    Oudshoorn C, Hartholt KA, Zillikens MC, Panneman MJ, van der Velde N, Colin EM, Patka P, van der Cammen TJ (2012) Emergency department visits due to vertebral fractures in the Netherlands, 1986–2008: steep increase in the oldest old, strong association with falls. Injury 43(4):458–461. doi:10.1016/j.injury.2011.09.014 PubMedCrossRefGoogle Scholar
  37. 37.
    Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ 3rd (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7(2):221–227PubMedCrossRefGoogle Scholar
  38. 38.
    Freitas SS, Barrett-Connor E, Ensrud KE, Fink HA, Bauer DC, Cawthon PM, Lambert LC, Orwoll ES (2008) Rate and circumstances of clinical vertebral fractures in older men. Osteoporos Int 19(5):615–623. doi:10.1007/s00198-007-0510-1 PubMedCrossRefGoogle Scholar
  39. 39.
    Edmondston SJ, Singer KP, Day RE, Price RI, Breidahl PD (1997) Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Osteoporos Int 7(2):142–148PubMedCrossRefGoogle Scholar
  40. 40.
    Ruyssen-Witrand A, Gossec L, Kolta S, Dougados M, Roux C (2007) Vertebral dimensions as risk factor of vertebral fracture in osteoporotic patients: a systematic literature review. Osteoporos Int 18(9):1271–1278. doi:10.1007/s00198-007-0356-6 PubMedCrossRefGoogle Scholar
  41. 41.
    Riggs BL, Melton LJ 3rd, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19(12):1945–1954. doi:10.1359/JBMR.040916 PubMedCrossRefGoogle Scholar
  42. 42.
    Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E, Adachi JD (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33(4):522–532PubMedCrossRefGoogle Scholar
  43. 43.
    Roux C, Fechtenbaum J, Kolta S, Briot K, Girard M (2007) Mild prevalent and incident vertebral fractures are risk factors for new fractures. Osteoporos Int 18(12):1617–1624. doi:10.1007/s00198-007-0413-1 PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  • D. E. Anderson
    • 1
    • 2
  • S. Demissie
    • 3
  • B. T. Allaire
    • 1
  • A. G. Bruno
    • 1
    • 4
  • D. L. Kopperdahl
    • 5
  • T. M. Keaveny
    • 5
    • 6
  • D. P. Kiel
    • 7
    • 8
  • M. L. Bouxsein
    • 1
    • 2
  1. 1.Center for Advanced Orthopaedic StudiesBeth Israel Deaconess Medical CenterBostonUSA
  2. 2.Department of Orthopedic SurgeryHarvard Medical SchoolBostonUSA
  3. 3.Department of BiostatisticsBoston University School of Public HealthBostonUSA
  4. 4.Harvard-MIT Health Sciences and Technology ProgramCambridgeUSA
  5. 5.ON DiagnosticsBerkeleyUSA
  6. 6.Departments of Mechanical Engineering and BioengineeringUniversity of CaliforniaBerkeleyUSA
  7. 7.Institute for Aging ResearchHebrew SeniorLifeBostonUSA
  8. 8.Department of Medicine, Harvard Medical School and Division of GerontologyBeth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations