Osteoporosis International

, Volume 25, Issue 2, pp 407–422 | Cite as

Next-generation sequencing: a frameshift in skeletal dysplasia gene discovery

Review

Abstract

In the last decade, huge breakthroughs in genetics—driven by new technology and different statistical approaches—have resulted in a plethora of new disease genes identified for both common and rare diseases. Massive parallel sequencing, commonly known as next-generation sequencing, is the latest advance in genetics, and has already facilitated the discovery of the molecular cause of many monogenic disorders. This article describes this new technology and reviews how this approach has been used successfully in patients with skeletal dysplasias. Moreover, this article illustrates how the study of rare diseases can inform understanding and therapeutic developments for common diseases such as osteoporosis.

Keywords

Massively parallel sequencing Next-generation sequencing Skeletal dysplasia 

References

  1. 1.
    Duncan EL, Brown MA (2010) Mapping genes for osteoporosis—old dogs and new tricks. Bone 46(5):1219–1225. doi:10.1016/j.bone.2009.12.035 PubMedCrossRefGoogle Scholar
  2. 2.
    Hsu YH, Kiel DP (2012) Clinical review: genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed. J Clin Endocrinol Metab 97(10):E1958–E1977. doi:10.1210/jc.2012-1890 PubMedCrossRefGoogle Scholar
  3. 3.
    Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, Koller DL, Li G, Liu CT, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao SM, Yerges-Armstrong LM, Zheng HF, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501. doi:10.1038/ng.2249 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Compston J (2011) Pathophysiology of atypical femoral fractures and osteonecrosis of the jaw. Osteoporos Int 22(12):2951–2961. doi:10.1007/s00198-011-1804-x PubMedCrossRefGoogle Scholar
  5. 5.
    Caskey CT (2007) The drug development crisis: efficiency and safety. Annu Rev Med 58:1–16. doi:10.1146/annurev.med.58.042705.124037 PubMedCrossRefGoogle Scholar
  6. 6.
    Polymeropoulos MH, Ortiz De Luna RI, Ide SE, Torres R, Rubenstein J, Francomano CA (1995) The gene for pycnodysostosis maps to human chromosome 1cen-q21. Nat Genet 10(2):238–239. doi:10.1038/ng0695-238 PubMedCrossRefGoogle Scholar
  7. 7.
    Gelb BD, Edelson JG, Desnick RJ (1995) Linkage of pycnodysostosis to chromosome 1q21 by homozygosity mapping. Nat Genet 10(2):235–237. doi:10.1038/ng0695-235 PubMedCrossRefGoogle Scholar
  8. 8.
    Gelb BD, Moissoglu K, Zhang J, Martignetti JA, Bromme D, Desnick RJ (1996) Cathepsin K: isolation and characterization of the murine cDNA and genomic sequence, the homologue of the human pycnodysostosis gene. Biochem Mol Med 59(2):200–206PubMedCrossRefGoogle Scholar
  9. 9.
    Eisman JA, Bone HG, Hosking DJ, McClung MR, Reid IR, Rizzoli R, Resch H, Verbruggen N, Hustad CM, DaSilva C, Petrovic R, Santora AC, Ince BA, Lombardi A (2011) Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res 26(2):242–251. doi:10.1002/jbmr.212 PubMedCrossRefGoogle Scholar
  10. 10.
    Langdahl B, Binkley N, Bone H, Gilchrist N, Resch H, Rodriguez Portales J, Denker A, Lombardi A, Le Bailly De Tilleghem C, Dasilva C, Rosenberg E, Leung A (2012) Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study. J Bone Miner Res 27(11):2251–2258. doi:10.1002/jbmr.1695 PubMedCrossRefGoogle Scholar
  11. 11.
    Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10(5):537–543PubMedCrossRefGoogle Scholar
  12. 12.
    Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68(3):577–589PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willems PJ, Verheij JB, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (2002) Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 39(2):91–97PubMedCrossRefGoogle Scholar
  14. 14.
    Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, Gardner JC, Galas D, Schatzman RC, Beighton P, Papapoulos S, Hamersma H, Brunkow ME (2002) A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12–q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 110(2):144–152. doi:10.1002/ajmg.10401 PubMedCrossRefGoogle Scholar
  15. 15.
    Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26(1):19–26. doi:10.1002/jbmr.173 PubMedCrossRefGoogle Scholar
  16. 16.
    Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Sillence D, Spranger J, Unger S, Zabel B, Superti-Furga A (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155A(5):943–968. doi:10.1002/ajmg.a.33909 PubMedCrossRefGoogle Scholar
  17. 17.
    Zankl A, Duncan EL, Leo PJ, Clark GR, Glazov EA, Addor MC, Herlin T, Kim CA, Leheup BP, McGill J, McTaggart S, Mittas S, Mitchell AL, Mortier GR, Robertson SP, Schroeder M, Terhal P, Brown MA (2012) Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. Am J Hum Genet 90(3):494–501. doi:10.1016/j.ajhg.2012.01.003 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, Leh SM, Midtbo M, Filhol E, Bole-Feysot C, Nitschke P, Gilissen C, Haugen OH, Sanders JS, Stolte-Dijkstra I, Mans DA, Steenbergen EJ, Hamel BC, Matignon M, Pfundt R, Jeanpierre C, Boman H, Rodahl E, Veltman JA, Knappskog PM, Knoers NV, Roepman R, Arts HH (2011) Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 89(5):634–643. doi:10.1016/j.ajhg.2011.10.001 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Campeau PM, Kim JC, Lu JT, Schwartzentruber JA, Abdul-Rahman OA, Schlaubitz S, Murdock DM, Jiang MM, Lammer EJ, Enns GM, Rhead WJ, Rowland J, Robertson SP, Cormier-Daire V, Bainbridge MN, Yang XJ, Gingras MC, Gibbs RA, Rosenblatt DS, Majewski J, Lee BH (2012) Mutations in KAT6B, encoding a histone acetyltransferase, cause Genitopatellar syndrome. Am J Hum Genet 90(2):282–289. doi:10.1016/j.ajhg.2011.11.023 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, Arts P, van Lier B, Steehouwer M, van Reeuwijk J, Kant SG, Roepman R, Knoers NV, Veltman JA, Brunner HG (2010) Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet 87(3):418–423. doi:10.1016/j.ajhg.2010.08.004 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman JA, Hoischen A, Netzer C (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88(3):362–371. doi:10.1016/j.ajhg.2011.01.015 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Sarig O, Nahum S, Rapaport D, Ishida-Yamamoto A, Fuchs-Telem D, Qiaoli L, Cohen-Katsenelson K, Spiegel R, Nousbeck J, Israeli S, Borochowitz ZU, Padalon-Brauch G, Uitto J, Horowitz M, Shalev S, Sprecher E (2012) Short stature, onychodysplasia, facial dysmorphism, and hypotrichosis syndrome is caused by a POC1A mutation. Am J Hum Genet 91(2):337–342. doi:10.1016/j.ajhg.2012.06.003 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC (2011) Mutations in NOTCH2 cause Hajdu–Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43(4):303–305. doi:10.1038/ng.779 PubMedCrossRefGoogle Scholar
  24. 24.
    Sun Y, Almomani R, Aten E, Celli J, van der Heijden J, Venselaar H, Robertson SP, Baroncini A, Franco B, Basel-Vanagaite L, Horii E, Drut R, Ariyurek Y, den Dunnen JT, Breuning MH (2010) Terminal osseous dysplasia is caused by a single recurrent mutation in the FLNA gene. Am J Hum Genet 87(1):146–153. doi:10.1016/j.ajhg.2010.06.008 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Zhang Z, Xia W, He J, Ke Y, Yue H, Wang C, Zhang H, Gu J, Hu W, Fu W, Hu Y, Li M, Liu Y (2012) Exome sequencing identifies SLCO2A1 mutations as a cause of primary hypertrophic osteoarthropathy. Am J Hum Genet 90(1):125–132. doi:10.1016/j.ajhg.2011.11.019 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265(5596):687–695PubMedCrossRefGoogle Scholar
  28. 28.
    Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145. doi:10.1038/nbt1486 PubMedCrossRefGoogle Scholar
  29. 29.
    International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945. doi:10.1038/nature03001 CrossRefGoogle Scholar
  30. 30.
    McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, Sekhon M, Wylie K, Mardis ER, Wilson RK, Fulton R, Kucaba TA, Wagner-McPherson C, Barbazuk WB, Gregory SG, Humphray SJ, French L, Evans RS, Bethel G, Whittaker A, Holden JL, McCann OT, Dunham A, Soderlund C, Scott CE et al (2001) A physical map of the human genome. Nature 409(6822):934–941. doi:10.1038/35057157 PubMedCrossRefGoogle Scholar
  31. 31.
    National Human Genome Research Institute NIoH (2010) The human genome project completion: frequently asked questions. http://www.genome.gov/11006943. Accessed 14 January 2013
  32. 32.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. doi:10.1038/nature03959 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309(5741):1728–1732. doi:10.1126/science.1117389 PubMedCrossRefGoogle Scholar
  34. 34.
    Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402. doi:10.1146/annurev.genom.9.081307.164359 PubMedCrossRefGoogle Scholar
  35. 35.
    Bainbridge MN, Warren RL, Hirst M, Romanuik T, Zeng T, Go A, Delaney A, Griffith M, Hickenbotham M, Magrini V, Mardis ER, Sadar MD, Siddiqui AS, Marra MA, Jones SJ (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7:246. doi:10.1186/1471-2164-7-246 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38(3):95–109. doi:10.1016/j.jgg.2011.02.003 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Wright C, Burton H, Hall A, Moorthie S, Pokorska-Bocci A, Sagoo G, Sanderson S, Skinner R (2011) Next steps in the sequence: the implications of whole genome sequencing for health in the UK. Foundation for Genomics and Population Health, CambridgeGoogle Scholar
  38. 38.
    Haque F, Li J, Wu HC, Liang XJ, Guo P (2013) Solid-State and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 8(1):56–74. doi:10.1016/j.nantod.2012.12.008 PubMedCrossRefGoogle Scholar
  39. 39.
    Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE (2012) The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol 13(10):175. doi:10.1186/gb-2012-13-10-175 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP, Luong K, Fomenkov A, Turner SW, Korlach J, Roberts RJ (2012) The methylomes of six bacteria. Nucleic Acids Res 40(22):11450–11462. doi:10.1093/nar/gks891 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Flicek P, Birney E (2009) Sense from sequence reads: methods for alignment and assembly. Nat Methods 6(11 Suppl):S6–S12. doi:10.1038/nmeth.1376 PubMedCrossRefGoogle Scholar
  42. 42.
    Jiang H, Wong WH (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24(20):2395–2396. doi:10.1093/bioinformatics/btn429 PubMedCrossRefGoogle Scholar
  43. 43.
    Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276. doi:10.1038/nature08250 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, Middle CM, Rodesch MJ, Albert TJ, Hannon GJ, McCombie WR (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39(12):1522–1527. doi:10.1038/ng.2007.42 PubMedCrossRefGoogle Scholar
  45. 45.
    Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4(11):907–909. doi:10.1038/nmeth1109 PubMedCrossRefGoogle Scholar
  46. 46.
    Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum C (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27(2):182–189. doi:10.1038/nbt.1523 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59. doi:10.1038/nature07517 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Shendure J (2011) Next-generation human genetics. Genome Biol 12(9):408. doi:10.1186/gb-2011-12-9-408 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Gilissen C, Hoischen A, Brunner HG, Veltman JA (2011) Unlocking Mendelian disease using exome sequencing. Genome Biol 12(9):228. doi:10.1186/gb-2011-12-9-228 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Stower H (2011) The exome factor. Genome Biol 12(9):407. doi:10.1186/gb-2011-12-9-407 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Strachan T, Read A (2011) Human molecular genetics, 4th edn. Garland Science, New YorkGoogle Scholar
  52. 52.
    Boyden ED, Campos-Xavier AB, Kalamajski S, Cameron TL, Suarez P, Tanackovic G, Andria G, Ballhausen D, Briggs MD, Hartley C, Cohn DH, Davidson HR, Hall C, Ikegawa S, Jouk PS, Konig R, Megarbane A, Nishimura G, Lachman RS, Mortier G, Rimoin DL, Rogers RC, Rossi M, Sawada H, Scott R, Unger S, Valadares ER, Bateman JF, Warman ML, Superti-Furga A, Bonafe L (2011) Recurrent dominant mutations affecting two adjacent residues in the motor domain of the monomeric kinesin KIF22 result in skeletal dysplasia and joint laxity. Am J Hum Genet 89(6):767–772. doi:10.1016/j.ajhg.2011.10.016 PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Min BJ, Kim N, Chung T, Kim OH, Nishimura G, Chung CY, Song HR, Kim HW, Lee HR, Kim J, Kang TH, Seo ME, Yang SD, Kim DH, Lee SB, Kim JI, Seo JS, Choi JY, Kang D, Kim D, Park WY, Cho TJ (2011) Whole-exome sequencing identifies mutations of KIF22 in spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type. Am J Hum Genet 89(6):760–766. doi:10.1016/j.ajhg.2011.10.015 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, Lee G, Kim HN, Lee HR, Eom HH, Lee ZH, Kim OH, Park WY, Park SS, Ikegawa S, Yoo WJ, Choi IH, Kim JW (2012) A single recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet 91(2):343–348. doi:10.1016/j.ajhg.2012.06.005 PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J, Iden S, Wirth B, Eysel P, Koerber F, Schoenau E, Bohlander SK, Wollnik B, Netzer C (2012) A Mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91(2):349–357. doi:10.1016/j.ajhg.2012.06.011 PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Simpson MA, Deshpande C, Dafou D, Vissers LE, Woollard WJ, Holder SE, Gillessen-Kaesbach G, Derks R, White SM, Cohen-Snuijf R, Kant SG, Hoefsloot LH, Reardon W, Brunner HG, Bongers EM, Trembath RC (2012) De novo mutations of the gene encoding the histone acetyltransferase KAT6B cause Genitopatellar syndrome. Am J Hum Genet 90(2):290–294. doi:10.1016/j.ajhg.2011.11.024 PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Below JE, Earl DL, Shively KM, McMillin MJ, Smith JD, Turner EH, Stephan MJ, Al-Gazali LI, Hertecant JL, Chitayat D, Unger S, Cohn DH, Krakow D, Swanson JM, Faustman EM, Shendure J, Nickerson DA, Bamshad MJ (2013) Whole-genome analysis reveals that mutations in inositol polyphosphate phosphatase-like 1 cause opsismodysplasia. Am J Hum Genet 92(1):137–143. doi:10.1016/j.ajhg.2012.11.011 PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Huber C, Faqeih EA, Bartholdi D, Bole-Feysot C, Borochowitz Z, Cavalcanti DP, Frigo A, Nitschke P, Roume J, Santos HG, Shalev SA, Superti-Furga A, Delezoide AL, Le Merrer M, Munnich A, Cormier-Daire V (2012) Exome sequencing identifies INPPL1 mutations as a cause of opsismodysplasia. Am J Hum Genet. doi:10.1016/j.ajhg.2012.11.015 PubMedGoogle Scholar
  59. 59.
    Keupp K, Beleggia F, Kayserili H, Barnes AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, Breer S, Altunoglu U, Grunhagen J, Krawitz P, Hecht J, Schinke T, Makareeva E, Lausch E, Cankaya T, Caparros-Martin JA, Lapunzina P, Temtamy S, Aglan M, Zabel B, Eysel P, Koerber F, Leikin S, Garcia KC, Netzer C et al (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92(4):565–574. doi:10.1016/j.ajhg.2013.02.010 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT, Fernandez BA, Elsayed SM, Elsobky E, Verma I, Nair S, Turner EH, Smith JD, Jarvik GP, Byers PH (2013) WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 92(4):590–597. doi:10.1016/j.ajhg.2013.02.009 PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Fahiminiya S, Majewski J, Mort J, Moffatt P, Glorieux FH, Rauch F (2013) Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet 50(5):345–348. doi:10.1136/jmedgenet-2013-101567 PubMedCrossRefGoogle Scholar
  62. 62.
    Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B, Bertin T, Napierala D, Morello R, Gibbs R, White L, Miki R, Cohn DH, Crawford S, Travers R, Glorieux FH, Lee B (2011) Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res 26(12):2798–2803. doi:10.1002/jbmr.487 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Dauber A, Lafranchi SH, Maliga Z, Lui JC, Moon JE, McDeed C, Henke K, Zonana J, Kingman GA, Pers TH, Baron J, Rosenfeld RG, Hirschhorn JN, Harris MP, Hwa V (2012) Novel microcephalic primordial dwarfism disorder associated with variants in the centrosomal protein ninein. J Clin Endocrinol Metab 97(11):E2140–E2151. doi:10.1210/jc.2012-2150 PubMedCrossRefGoogle Scholar
  64. 64.
    Grosch M, Gruner B, Spranger S, Stutz AM, Rausch T, Korbel JO, Seelow D, Nurnberg P, Sticht H, Lausch E, Zabel B, Winterpacht A, Tagariello A (2013) Identification of a Ninein (NIN) mutation in a family with spondyloepimetaphyseal dysplasia with joint laxity (leptodactylic type)-like phenotype. Matrix Biol. doi:10.1016/j.matbio.2013.05.001 PubMedGoogle Scholar
  65. 65.
    Sirmaci A, Spiliopoulos M, Brancati F, Powell E, Duman D, Abrams A, Bademci G, Agolini E, Guo S, Konuk B, Kavaz A, Blanton S, Digilio MC, Dallapiccola B, Young J, Zuchner S, Tekin M (2011) Mutations in ANKRD11 cause KBG syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia. Am J Hum Genet 89(2):289–294. doi:10.1016/j.ajhg.2011.06.007 PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Sparrow DB, McInerney-Leo A, Gucev ZS, Gardiner B, Marshall M, Leo PJ, Chapman DL, Tasic V, Shishko A, Brown MA, Duncan EL, Dunwoodie SL (2013) Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum Mol Genet 22:1625–1631Google Scholar
  67. 67.
    Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA, Mulliken JB, Bowen ME, Yamamoto GL, Kozakewich HP, Warman ML (2012) Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 90(6):1108–1115. doi:10.1016/j.ajhg.2012.05.006 PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Campeau PM, Lu JT, Sule G, Jiang MM, Bae Y, Madan S, Hogler W, Shaw NJ, Mumm S, Gibbs RA, Whyte MP, Lee BH (2012) Whole-exome sequencing identifies mutations in the nucleoside transporter gene SLC29A3 in dysosteosclerosis, a form of osteopetrosis. Hum Mol Genet 21(22):4904–4909. doi:10.1093/hmg/dds326 PubMedCrossRefGoogle Scholar
  69. 69.
    Campeau PM, Lenk GM, Lu JT, Bae Y, Burrage L, Turnpenny P, Roman Corona-Rivera J, Morandi L, Mora M, Reutter H, Vulto-van Silfhout AT, Faivre L, Haan E, Gibbs RA, Meisler MH, Lee BH (2013) Yunis–Varon syndrome is caused by mutations in FIG 4, encoding a phosphoinositide phosphatase. Am J Hum Genet 92(5):781–791. doi:10.1016/j.ajhg.2013.03.020 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Nakajima M, Mizumoto S, Miyake N, Kogawa R, Iida A, Ito H, Kitoh H, Hirayama A, Mitsubuchi H, Miyazaki O, Kosaki R, Horikawa R, Lai A, Mendoza-Londono R, Dupuis L, Chitayat D, Howard A, Leal GF, Cavalcanti D, Tsurusaki Y, Saitsu H, Watanabe S, Lausch E, Unger S, Bonafe L, Ohashi H, Superti-Furga A, Matsumoto N, Sugahara K, Nishimura G, Ikegawa S (2013) Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme. Cause a spectrum of skeletal and connective tissue disorders. Am J Hum Genet. doi:10.1016/j.ajhg.2013.04.003 PubMedCentralPubMedGoogle Scholar
  71. 71.
    Shaheen R, Faqeih E, Sunker A, Morsy H, Al-Sheddi T, Shamseldin HE, Adly N, Hashem M, Alkuraya FS (2011) Recessive mutations in DOCK6, encoding the guanidine nucleotide exchange factor DOCK6, lead to abnormal actin cytoskeleton organization and Adams–Oliver syndrome. Am J Hum Genet 89(2):328–333. doi:10.1016/j.ajhg.2011.07.009 PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Shaheen R, Aglan M, Keppler-Noreuil K, Faqeih E, Ansari S, Horton K, Ashour A, Zaki MS, Al-Zahrani F, Cueto-Gonzalez AM, Abdel-Salam G, Temtamy S, Alkuraya FS (2013) Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams–Oliver syndrome. Am J Hum Genet 92(4):598–604. doi:10.1016/j.ajhg.2013.02.012 PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Asharani PV, Keupp K, Semler O, Wang W, Li Y, Thiele H, Yigit G, Pohl E, Becker J, Frommolt P, Sonntag C, Altmuller J, Zimmermann K, Greenspan DS, Akarsu NA, Netzer C, Schonau E, Wirth R, Hammerschmidt M, Nurnberg P, Wollnik B, Carney TJ (2012) Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am J Hum Genet 90(4):661–674. doi:10.1016/j.ajhg.2012.02.026 PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Ali BR, Silhavy JL, Akawi NA, Gleeson JG, Al-Gazali L (2012) A mutation in KIF7 is responsible for the autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance. Orphanet J Rare Dis 7:27. doi:10.1186/1750-1172-7-27 PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Glazov EA, Zankl A, Donskoi M, Kenna TJ, Thomas GP, Clark GR, Duncan EL, Brown MA (2011) Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia. PLoS Genet 7(3):e1002027. doi:10.1371/journal.pgen.1002027 PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Miyake N, Elcioglu NH, Iida A, Isguven P, Dai J, Murakami N, Takamura K, Cho TJ, Kim OH, Hasegawa T, Nagai T, Ohashi H, Nishimura G, Matsumoto N, Ikegawa S (2012) PAPSS2 mutations cause autosomal recessive brachyolmia. J Med Genet 49(8):533–538. doi:10.1136/jmedgenet-2012-101039 PubMedCrossRefGoogle Scholar
  77. 77.
    Schrader KA, Heravi-Moussavi A, Waters PJ, Senz J, Whelan J, Ha G, Eydoux P, Nielsen T, Gallagher B, Oloumi A, Boyd N, Fernandez BA, Young TL, Jones SJ, Hirst M, Shah SP, Marra MA, Green J, Huntsman DG (2011) Using next-generation sequencing for the diagnosis of rare disorders: a family with retinitis pigmentosa and skeletal abnormalities. J Pathol 225(1):12–18. doi:10.1002/path.2941 PubMedCrossRefGoogle Scholar
  78. 78.
    Vissers LE, Lausch E, Unger S, Campos-Xavier AB, Gilissen C, Rossi A, Del Rosario M, Venselaar H, Knoll U, Nampoothiri S, Nair M, Spranger J, Brunner HG, Bonafe L, Veltman JA, Zabel B, Superti-Furga A (2011) Chondrodysplasia and abnormal joint development associated with mutations in IMPAD1, encoding the Golgi-resident nucleotide phosphatase, gPAPP. Am J Hum Genet 88(5):608–615. doi:10.1016/j.ajhg.2011.04.002 PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Rauch F, Moffatt P, Cheung M, Roughley P, Lalic L, Lund AM, Ramirez N, Fahiminiya S, Majewski J, Glorieux FH (2013) Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c.-14C>T mutation in all patients. J Med Genet 50(1):21–24. doi:10.1136/jmedgenet-2012-101307 PubMedCrossRefGoogle Scholar
  80. 80.
    Shaheen R, Alazami AM, Alshammari MJ, Faqeih E, Alhashmi N, Mousa N, Alsinani A, Ansari S, Alzahrani F, Al-Owain M, Alzayed ZS, Alkuraya FS (2012) Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation. J Med Genet 49(10):630–635. doi:10.1136/jmedgenet-2012-101142 PubMedCrossRefGoogle Scholar
  81. 81.
    Volodarsky M, Markus B, Cohen I, Staretz-Chacham O, Flusser H, Landau D, Shelef I, Langer Y, Birk OS (2013) A deletion mutation in TMEM38B associated with autosomal recessive osteogenesis imperfecta. Hum Mutat 34(4):582–586. doi:10.1002/humu.22274 PubMedGoogle Scholar
  82. 82.
    Shapiro JR, Lietman C, Grover M, Lu JT, Nagamani SC, Dawson BC, Baldridge DM, Bainbridge MN, Cohn DH, Blazo M, Roberts TT, Brennen FS, Wu Y, Gibbs RA, Melvin P, Campeau PM, Lee BH (2013) Phenotypic variability of osteogenesis imperfecta type V caused by an IFITM5 mutation. J Bone Miner Res. doi:10.1002/jbmr.1891 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Carmichael H, Shen Y, Nguyen T, Hirschhorn J, Dauber A (2012) Whole exome sequencing in a patient with uniparental disomy of chromosome 2 and a complex phenotype. Clin Genet. doi:10.1111/cge.12064 PubMedGoogle Scholar
  84. 84.
    Sule G, Campeau PM, Zhang VW, Nagamani SC, Dawson BC, Grover M, Bacino CA, Sutton VR, Brunetti-Pierri N, Lu JT, Lemire E, Gibbs RA, Cohn DH, Cui H, Wong LJ, Lee BH (2013) Next-generation sequencing for disorders of low and high bone mineral density. Osteoporos Int. doi:10.1007/s00198-013-2290-0 PubMedCentralPubMedGoogle Scholar
  85. 85.
    Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ, Nieminen-Pihala V, Aronen M, Laine T, Kroger H, Cole WG, Lehesjoki AE, Nevarez L, Krakow D, Curry CJ, Cohn DH, Gibbs RA, Lee BH, Makitie O (2013) WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med 368(19):1809–1816. doi:10.1056/NEJMoa1215458 PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Styrkarsdottir U, Thorleifsson G, Sulem P, Gudbjartsson DF, Sigurdsson A, Jonasdottir A, Oddsson A, Helgason A, Magnusson OT, Walters GB, Frigge ML, Helgadottir HT, Johannsdottir H, Bergsteinsdottir K, Ogmundsdottir MH, Center JR, Nguyen TV, Eisman JA, Christiansen C, Steingrimsson E, Jonasson JG et al (2013) Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature 497(7450):517–520. doi:10.1038/nature12124 PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  1. 1.University of QueenslandUQ Centre for Clinical ResearchBrisbaneAustralia
  2. 2.University of Queensland Diamantina InstituteBrisbaneAustralia
  3. 3.Department of EndocrinologyRoyal Brisbane and Women’s HospitalBrisbaneAustralia

Personalised recommendations