Skip to main content

Advertisement

Log in

Exploring the determinants of fracture risk among individuals with spinal cord injury

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In this cross-sectional study, we found that areal bone mineral density (aBMD) at the knee and specific tibia bone geometry variables are associated with fragility fractures in men and women with chronic spinal cord injury (SCI).

Introduction

Low aBMD of the hip and knee regions have been associated with fractures among individuals with chronic motor complete SCI; however, it is unclear whether these variables can be used to identify those at risk of fracture. In this cross-sectional study, we examined whether BMD and geometry measures are associated with lower extremity fragility fractures in individuals with chronic SCI.

Methods

Adults with chronic [duration of injury ≥ 2 years] traumatic SCI (C1-L1 American Spinal Cord Injury Association Impairment Scale A-D) reported post injury lower extremity fragility fractures. Dual-energy X-ray absorptiometry (DXA) was used to measure aBMD of the hip, distal femur, and proximal tibia regions, while bone geometry at the tibia was assessed using peripheral quantitative computed tomography (pQCT). Logistic regression and univariate analyses were used to identify whether clinical characteristics or bone geometry variables were associated with fractures.

Results

Seventy individuals with SCI [mean age (standard deviation [SD]), 48.8 (11.5); 20 females] reported 19 fragility fractures. Individuals without fractures had significantly greater aBMD of the hip and knee regions and indices of bone geometry. Every SD decrease in aBMD of the distal femur and proximal tibia, trabecular volumetric bone mineral density, and polar moment of inertia was associated with fracture prevalence after adjusting for motor complete injury (odds ratio ranged from 3.2 to 6.1).

Conclusion

Low knee aBMD and suboptimal bone geometry are significantly associated with fractures. Prospective studies are necessary to confirm the bone parameters reported to predict fracture risk in individuals with low bone mass and chronic SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  1. Garland DE, Adkins RH (2001) Bone loss at the knee in spinal cord injury. Top Spinal Cord Inj Rehabil 6:37–46

    Article  Google Scholar 

  2. Garland DE, Stewart CA, Adkins RH et al (1992) Osteoporosis after spinal cord injury. J Orthop Res 10:371–378

    Article  CAS  PubMed  Google Scholar 

  3. Zehnder Y, Lüthi M, Michel D et al (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189

    Article  PubMed  Google Scholar 

  4. Vestergaard P, Krogh K, Rejnmark L et al (1998) Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 36:790–796

    Article  CAS  PubMed  Google Scholar 

  5. Ragnarsson KT, Sell GH (1981) Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 62:418–423

    CAS  PubMed  Google Scholar 

  6. Comarr AE, Hutchinson RH, Bors E (2005) Extremity fractures of patients with spinal cord injuries. Top Spinal Cord Inj Rehabil 11:1–10

    Google Scholar 

  7. Freehafer AA, Hazel CM, Becker CL (1981) Lower extremity fractures in patients with spinal cord injury. Spinal Cord 19:367–372

    Article  CAS  Google Scholar 

  8. Lazo MG, Shirazi P, Sam M et al (2001) Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord 39:208–214

    Article  CAS  PubMed  Google Scholar 

  9. Carbone LD, Chin AS, Burns SP et al (2013) Morbidity following lower extremity fractures in men with spinal cord injury. Osteoporos Int. doi:10.1007/s00198-013-2295-8

    Google Scholar 

  10. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  11. Papaioannou A, Morin S, Cheung AM et al (2010) 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. Can Med Assoc J 182:1864–1873

    Article  Google Scholar 

  12. Kanis JA, Johnell O, Odén A et al (2008) FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Farry A, Baxter D (2010) The incidence and prevalence of spinal cord injury in Canada. Overview and estimates based on current evidence. Rick Hansen Institute and Urban Futures

  14. Craven B, Giangregorio L, Robertson L et al (2008) Sublesional osteoporosis prevention, detection, and treatment: a decision guide for rehabilitation clinicians treating patients with spinal cord injury. Crit Rev Phys Rehabil Med 20:277–321

    Article  Google Scholar 

  15. Eser P, Frotzler A, Zehnder Y et al (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34:869–880

    Article  CAS  PubMed  Google Scholar 

  16. Slade JM, Bickel CS, Modlesky CM et al (2005) Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporos Int 16:263–272

    Article  PubMed  Google Scholar 

  17. Modlesky CM, Majumdar S, Narasimhan A, Dudley GA (2004) Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res 19:48–55

    Article  PubMed  Google Scholar 

  18. Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Investig 20:330–335

    Article  CAS  Google Scholar 

  19. Garland DE, Adkins RH, Stewart CA (2005) Fracture threshold and risk for osteoporosis and pathologic fractures in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil 11:61–69

    Article  Google Scholar 

  20. Eser P, Frotzler A, Zehnder Y, Denoth J (2005) Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 86:498–504

    Article  PubMed  Google Scholar 

  21. Sheu Y, Zmuda JM, Boudreau RM et al (2011) Bone strength measured by peripheral quantitative computed tomography and the risk of nonvertebral fractures: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res 26:63–71

    Article  PubMed  Google Scholar 

  22. Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21:543–548

    Article  PubMed  Google Scholar 

  23. Taes Y, Lapauw B, Griet V et al (2010) Prevalent fractures are related to cortical bone geometry in young healthy men at age of peak bone mass. J Bone Miner Res 25:1433–1440

    Article  PubMed  Google Scholar 

  24. Frey-Rindova P, De Bruin ED, Stüssi E et al (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38:26–32

    Article  CAS  PubMed  Google Scholar 

  25. Dionyssiotis Y, Trovas G, Galanos A et al (2007) Bone loss and mechanical properties of tibia in spinal cord injured men. J Musculoskelet Neuronal Interact 7:62–68

    CAS  PubMed  Google Scholar 

  26. Maynard FM Jr, Bracken MB, Creasey G et al (1997) International standards for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Spinal Cord 35:266–274

    Article  PubMed  Google Scholar 

  27. Edwards LA, Bugaresti JM, Buchholz AC (2008) Visceral adipose tissue and the ratio of visceral to subcutaneous adipose tissue are greater in adults with than in those without spinal cord injury, despite matching waist circumferences. Am J Clin Nutr 87:600–607

    CAS  PubMed  Google Scholar 

  28. Krieger N, Tenenhouse A, Joseph L et al (1999) The Canadian Multicentre Osteoporosis Study. Can J Aging 18:376–387

    Article  Google Scholar 

  29. Moreno JC (2001) Protocol for using dual photon absorptiometry software to measure BMD of distal femur and proximal tibia. Master’s thesis, McMaster University, Hamilton

  30. Yoshioka Y, Siu DW, Scudamore RA, Cooke TD (1989) Tibial anatomy and functional axes. J Orthop Res 7:132–137

    Article  CAS  PubMed  Google Scholar 

  31. Giangregorio L, Lala D, Hummel K et al (2012) Measuring apparent trabecular density and bone structure using peripheral quantitative computed tomography at the tibia: precision in participants with and without spinal cord injury. J Clin Densitom. doi:10.1016/j.jocd.2012.02.003

    Google Scholar 

  32. Ashe MC, Khan KM, Kontulainen SA et al (2006) Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 17:1241–1251

    Article  CAS  PubMed  Google Scholar 

  33. Melton LJ, Beck TJ, Amin S et al (2005) Contributions of bone density and structure to fracture risk assessment in men and women. Osteoporos Int 16:460–467

    Article  PubMed  Google Scholar 

  34. Garland DE, Adkins RH, Kushwaha V et al (2004) Risk factors for osteoporosis at the knee in the spinal cord injury population. J Spinal Cord Med 27:202–206

    PubMed  Google Scholar 

  35. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275:1081–1101

    Article  PubMed  Google Scholar 

  36. Totosy de Zepetnek JO, Craven BC, Giangregorio LM (2012) An evaluation of the muscle–bone unit theory among individuals with chronic spinal cord injury. Spinal Cord 50:147–152

    Article  CAS  PubMed  Google Scholar 

  37. De Bruin ED, Herzog R, Rozendal RH et al (2000) Estimation of geometric properties of cortical bone in spinal cord injury. Arch Phys Med Rehabil 81:150–156

    PubMed  Google Scholar 

  38. Jiang S-D, Dai L-Y, Jiang L-S (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192. doi:10.1007/s00198-005-2028-8

    Article  PubMed  Google Scholar 

  39. Duan Y, De Luca V, Seeman E (1999) Parathyroid hormone deficiency and excess: similar effects on trabecular bone but differing effects on cortical bone. J Clin Endocrinol Metab 84:718–722

    CAS  PubMed  Google Scholar 

  40. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    CAS  PubMed  Google Scholar 

  41. Negri AL, Barone R, Lombas C et al (2006) Evaluation of cortical bone by peripheral quantitative computed tomography in continuous ambulatory peritoneal dialysis patients. Hemodial Int 10:351–355

    Article  PubMed  Google Scholar 

  42. Bauman WA, Zhong YG, Schwartz E (1995) Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism 44:1612–1616

    Article  CAS  PubMed  Google Scholar 

  43. Hummel K, Craven BC, Giangregorio L (2012) Serum 25(OH)D, PTH and correlates of suboptimal 25(OH)D levels in persons with chronic spinal cord injury. Spinal Cord 50:812–816

    Article  CAS  PubMed  Google Scholar 

  44. Bauman WA, Spungen AM (2000) Metabolic changes in persons after spinal cord injury. Phys Med Rehabil Clin N Am 11:109–140

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Ontario Neurotrauma Foundation (grant #2009-SC-MA-684), the Canadian Institutes of Health Research (grant #86521), the Spinal Cord Injury Solutions Network (RHI; grant #2010-43), and the Toronto Rehabilitation Institute who receives funding under the Provincial Rehabilitation Research Program from the Ministry of Health and Long-Term Care. The views expressed do not necessarily reflect those of the ministry.

Conflicts of interest

A. Papiaoannou, JD. Adachi - Consultant/Speaker: Amgen, Eli Lillly, GSK, Merk, Novartis, Warner-Chilcott; Clinic Trials: Eli Lilly, Merck, Novartism, Pfizer.

M. Popovic - Share holder in MyndTec.

L. Giangregorio - Research Support: Merck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Giangregorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lala, D., Craven, B.C., Thabane, L. et al. Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporos Int 25, 177–185 (2014). https://doi.org/10.1007/s00198-013-2419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2419-1

Keywords

Navigation