Skip to main content

Advertisement

Log in

Abdominal body composition measured by quantitative computed tomography and risk of non-spine fractures: the Osteoporotic Fractures in Men (MrOS) study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The effect of abdominal adiposity and muscle on fracture is unclear in older men; therefore, we examined the association among 749 men aged 65+. Among various adipose tissues and muscle groups, lower psoas muscle volume and higher fatty infiltration of abdominal muscle contribute to higher fracture risk independent of BMD.

Introduction

The association of abdominal adiposity and muscle composition with incident fracture is unclear, especially in older men. Therefore, we examined the relationship of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), abdominal intermuscular adipose tissue (IMAT), and muscle volume with incident non-spine fractures among 749 men aged 65 and older.

Methods

A case–cohort study design was used with a total of 252 fracture cases and 497 non-cases. We measured volumes (in centimeters) of adipose and muscle tissues obtained from quantitative computed tomography scan at the L4–5 intervertebral space. Three groups of muscle and IMAT were evaluated: total abdominal, psoas, and paraspinal. Cox proportional hazards regression with a robust variance estimator was used to estimate the hazard ratio (HR) of non-spine fractures per standard deviation (SD) increase in the abdominal body composition measures. The mean age among men in the random subcohort was 74.2 ± 6.1 years, and the average follow-up time was 5.2 ± 1.1 years.

Results

After adjusting for age, race, clinic site, percent body fat, and femoral neck bone mineral density (BMD), no significant relationship was found between incident fractures and SAT or VAT. One SD increase in muscle volume at the psoas, but not paraspinal, was associated with 28 % lower fracture risk (95 % CI = 0.55–0.95). When IMAT models were further adjusted for corresponding muscle volumes, only abdominal IMAT was significantly associated with fracture risk (HR = 1.30 (95 % CI = 1.04–1.63)).

Conclusion

Our findings suggest that lower total psoas muscle volume and higher IMAT of the total abdominal muscle contribute to higher fracture risk in older men independent of BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jacobsen SJ, Goldberg J, Miles TP, Brody JA, Stiers W, Rimm AA (1992) Race and sex differences in mortality following fracture of the hip. Am J Public Health 82(8):1147–1150

    Article  PubMed  CAS  Google Scholar 

  2. Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7(5):407–413

    Article  PubMed  CAS  Google Scholar 

  3. Kuk JL, Saunders TJ, Davidson LE, Ross R (2009) Age-related changes in total and regional fat distribution. Ageing Res Rev 8(4):339–348

    Article  PubMed  Google Scholar 

  4. Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross R (2006) Visceral fat is an independent predictor of all-cause mortality in men. Obesity (Silver Spring, MD 14(2):336–341

    Article  Google Scholar 

  5. Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23(2):201–229

    Article  PubMed  CAS  Google Scholar 

  6. Cawthon PM, Ewing SK, McCulloch CE, Ensrud KE, Cauley JA, Cummings SR, Orwoll ES (2009) Loss of hip BMD in older men: the Osteoporotic Fractures in Men (MrOS) study. J Bone Miner Res 24(10):1728–1735

    Article  PubMed  Google Scholar 

  7. Imamura K, Ashida H, Ishikawa T, Fujii M (1983) Human major psoas muscle and sacrospinalis muscle in relation to age: a study by computed tomography. J Gerontol 38(6):678–681

    Article  PubMed  CAS  Google Scholar 

  8. Bemben MG, Massey BH, Bemben DA, Boileau RA, Misner JE (1995) Age-related patterns in body composition for men aged 20–79 yr. Med Sci Sports Exerc 27(2):264–269

    PubMed  CAS  Google Scholar 

  9. Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA (2002) Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr 76(2):473–481

    PubMed  CAS  Google Scholar 

  10. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: the Health ABC Study. J Appl Physiol 90(6):2157–2165

    PubMed  CAS  Google Scholar 

  11. Lee CG, Fujimoto WY, Brunzell JD, Kahn SE, McNeely MJ, Leonetti DL, Boyko EJ (2010) Intra-abdominal fat accumulation is greatest at younger ages in Japanese-American adults. Diabetes Res Clin Pract 89(1):58–64. doi:10.1016/j.diabres.2010.03.006

    Article  PubMed  Google Scholar 

  12. Borkan GA, Hults DE, Gerzof SG, Robbins AH, Silbert CK (1983) Age changes in body composition revealed by computed tomography. J Gerontol 38(6):673–677

    Article  PubMed  CAS  Google Scholar 

  13. Couillard C, Gagnon J, Bergeron J, Leon AS, Rao DC, Skinner JS, Wilmore JH, Despres JP, Bouchard C (2000) Contribution of body fatness and adipose tissue distribution to the age variation in plasma steroid hormone concentrations in men: the HERITAGE Family Study. J Clin Endocrinol Metab 85(3):1026–1031

    Article  PubMed  CAS  Google Scholar 

  14. Despres JP, Nadeau A, Tremblay A, Ferland M, Moorjani S, Lupien PJ, Theriault G, Pinault S, Bouchard C (1989) Role of deep abdominal fat in the association between regional adipose tissue distribution and glucose tolerance in obese women. Diabetes 38(3):304–309

    Article  PubMed  CAS  Google Scholar 

  15. Goodpaster BH, Krishnaswami S, Resnick H, Kelley DE, Haggerty C, Harris TB, Schwartz AV, Kritchevsky S, Newman AB (2003) Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 26(2):372–379

    Article  PubMed  Google Scholar 

  16. Nguyen ND, Pongchaiyakul C, Center JR, Eisman JA, Nguyen TV (2005) Abdominal fat and hip fracture risk in the elderly: the Dubbo Osteoporosis Epidemiology Study. BMC Musculoskelet Disord 6:11

    Article  PubMed  Google Scholar 

  17. Sjostrom L (1991) A computer-tomography based multicompartment body composition technique and anthropometric predictions of lean body mass, total and subcutaneous adipose tissue. Int J Obes 15(Suppl 2):19–30

    PubMed  Google Scholar 

  18. Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R (2000) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 89(1):104–110

    PubMed  CAS  Google Scholar 

  19. Choi HS, Kim KJ, Kim KM, Hur NW, Rhee Y, Han DS, Lee EJ, Lim SK (2010) Relationship between visceral adiposity and bone mineral density in Korean adults. Calcif Tissue Int 87(3):218–225

    Article  PubMed  CAS  Google Scholar 

  20. Yamaguchi T, Kanazawa I, Yamamoto M, Kurioka S, Yamauchi M, Yano S, Sugimoto T (2009) Associations between components of the metabolic syndrome versus bone mineral density and vertebral fractures in patients with type 2 diabetes. Bone 45(2):174–179

    Article  PubMed  CAS  Google Scholar 

  21. Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, Misra M (2010) Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 95(3):1247–1255

    Article  PubMed  CAS  Google Scholar 

  22. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB (2010) Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res 25(3):513–519

    Article  PubMed  Google Scholar 

  23. Lang T, Koyama A, Li C, Li J, Lu Y, Saeed I, Gazze E, Keyak J, Harris T, Cheng X (2008) Pelvic body composition measurements by quantitative computed tomography: association with recent hip fracture. Bone 42(4):798–805

    Article  PubMed  CAS  Google Scholar 

  24. Blank JB, Cawthon PM, Carrion-Petersen ML, Harper L, Johnson JP, Mitson E, Delay RR (2005) Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials 26(5):557–568

    Article  PubMed  Google Scholar 

  25. Orwoll E, Blank JB, Barrett-Connor E, Cauley J, Cummings S, Ensrud K, Lewis C, Cawthon PM, Marcus R, Marshall LM, McGowan J, Phipps K, Sherman S, Stefanick ML, Stone K (2005) Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study–a large observational study of the determinants of fracture in older men. Contemp Clin Trials 26(5):569–585

    Article  PubMed  Google Scholar 

  26. Marshall LM, Lang TF, Lambert LC, Zmuda JM, Ensrud KE, Orwoll ES (2006) Dimensions and volumetric BMD of the proximal femur and their relation to age among older U.S. men. J Bone Miner Res 21(8):1197–1206

    Article  PubMed  Google Scholar 

  27. Kvist H, Chowdhury B, Sjostrom L, Tylen U, Cederblad A (1988) Adipose tissue volume determination in males by computed tomography and 40 K. Int J Obes 12(3):249–266

    PubMed  CAS  Google Scholar 

  28. Rossner S, Bo WJ, Hiltbrandt E, Hinson W, Karstaedt N, Santago P, Sobol WT, Crouse JR (1990) Adipose tissue determinations in cadavers—a comparison between cross-sectional planimetry and computed tomography. Int J Obes 14(10):893–902

    PubMed  CAS  Google Scholar 

  29. Barlow WE, Ichikawa L, Rosner D, Izumi S (1999) Analysis of case–cohort designs. J Clin Epidemiol 52(12):1165–1172

    Article  PubMed  CAS  Google Scholar 

  30. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol 60(3):324–333

    Article  Google Scholar 

  31. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, Harris TB (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc 50(5):897–904

    Article  PubMed  Google Scholar 

  32. Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM, Ensrud K, Stefanick ML, Barrett-Connor E, Orwoll ES (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 26(3):496–502. doi:10.1002/jbmr.235

    Article  PubMed  Google Scholar 

  33. Schaffler A, Herfarth H, Paul G, Ehling A, Muller-Ladner U, Scholmerich J, Zietz B (2004) Identification of influencing variables on adiponectin serum levels in diabetes mellitus type 1 and type 2. Exp Clin Endocrinol Diabetes 112(7):383–389

    Article  PubMed  CAS  Google Scholar 

  34. Strotmeyer ES, Cauley JA (2007) Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes 14(6):429–435

    Article  PubMed  Google Scholar 

  35. Lauretani F, Bandinelli S, Bartali B, Di Iorio A, Giacomini V, Corsi AM, Guralnik JM, Ferrucci L (2006) Axonal degeneration affects muscle density in older men and women. Neurobiol Aging 27(8):1145–1154. doi:10.1016/j.neurobiolaging.2005.06.009

    Article  PubMed  Google Scholar 

  36. Schafer AL, Vittinghoff E, Lang TF, Sellmeyer DE, Harris TB, Kanaya AM, Strotmeyer ES, Cawthon PM, Cummings SR, Tylavsky FA, Scherzinger AL, Schwartz AV (2010) Fat infiltration of muscle, diabetes, and clinical fracture risk in older adults. J Clin Endocrinol Metab 95(11):E368–E372. doi:10.1210/jc.2010-0780

    Article  PubMed  Google Scholar 

  37. Hicks GE, Simonsick EM, Harris TB, Newman AB, Weiner DK, Nevitt MA, Tylavsky FA (2005) Cross-sectional associations between trunk muscle composition, back pain, and physical function in the health, aging and body composition study. J Gerontol 60(7):882–887

    Article  Google Scholar 

  38. Mengiardi B, Schmid MR, Boos N, Pfirrmann CW, Brunner F, Elfering A, Hodler J (2006) Fat content of lumbar paraspinal muscles in patients with chronic low back pain and in asymptomatic volunteers: quantification with MR spectroscopy. Radiology 240(3):786–792

    Article  PubMed  Google Scholar 

  39. Sinaki M, Itoi E, Wahner HW, Wollan P, Gelzcer R, Mullan BP, Collins DA, Hodgson SF (2002) Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women. Bone 30(6):836–841

    Article  PubMed  CAS  Google Scholar 

  40. Briggs AM, Greig AM, Bennell KL, Hodges PW (2007) Paraspinal muscle control in people with osteoporotic vertebral fracture. Eur Spine J 16(8):1137–1144. doi:10.1007/s00586-006-0276-8

    Article  PubMed  Google Scholar 

  41. Pollock NK, Bernard PJ, Wenger K, Misra S, Gower BA, Allison JD, Zhu H, Davis CL (2010) Lower bone mass in prepubertal overweight children with pre-diabetes. J Bone Miner Res 25(12):2760–2769

    Google Scholar 

  42. Szulc P, Varennes A, Delmas PD, Goudable J, Chapurlat R (2010) Men with metabolic syndrome have lower bone mineral density but lower fracture risk–the MINOS study. J Bone Miner Res 25(6):1446–1454

    Article  PubMed  Google Scholar 

  43. Ensrud KE, Lipschutz RC, Cauley JA, Seeley D, Nevitt MC, Scott J, Orwoll ES, Genant HK, Cummings SR (1997) Body size and hip fracture risk in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Am J Med 103(4):274–280

    Article  PubMed  CAS  Google Scholar 

  44. Sheu Y, Cauley JA (2011) The role of bone marrow and visceral fat on bone metabolism. Curr Osteoporos Rep 9(2):67–75

    Article  PubMed  Google Scholar 

  45. Lee MJ, Wu Y, Fried SK (2013) Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med 34(1):1–11. doi:10.1016/j.mam.2012.10.001

    Article  PubMed  CAS  Google Scholar 

  46. Miyawaki T, Abe M, Yahata K, Kajiyama N, Katsuma H, Saito N (2004) Contribution of visceral fat accumulation to the risk factors for atherosclerosis in non-obese Japanese. Intern Med (Tokyo, Japan) 43(12):1138–1144

    Article  Google Scholar 

  47. Miljkovic I, Cauley JA, Petit MA, Ensrud KE, Strotmeyer E, Sheu Y, Gordon CL, Goodpaster BH, Bunker CH, Patrick AL, Wheeler VW, Kuller LH, Faulkner KA, Zmuda JM (2009) Greater adipose tissue infiltration in skeletal muscle among older men of African ancestry. J Clin Endocrinol Metab 94(8):2735–2742. doi:10.1210/jc.2008-2541

    Article  PubMed  CAS  Google Scholar 

  48. Zoico E, Rossi A, Di Francesco V, Sepe A, Olioso D, Pizzini F, Fantin F, Bosello O, Cominacini L, Harris TB, Zamboni M (2010) Adipose tissue infiltration in skeletal muscle of healthy elderly men: relationships with body composition, insulin resistance, and inflammation at the systemic and tissue level. J Gerontol 65(3):295–299. doi:10.1093/gerona/glp155

    Google Scholar 

Download references

Acknowledgments

The Osteoporotic Fractures in Men (MrOS) Study is supported by a National Institutes of Health funding. The following institutes provide support: the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Institute on Aging (NIA), the National Center for Research Resources (NCRR), and NIH Roadmap for Medical Research under the following grant numbers: U01 AR45580, U01 AR45614, U01 AR45632, U01 AR45647, U01 AR45654, U01 AR45583, U01 AG18197, U01-AG027810, and UL1 RR024140. Abdominal body composition image processing was supported by the Oregon Medical Research Foundation and the National Institutes of Health through grants R21 DK066224, R01 HL084183, P60 AR05473101, and UL1RR024140.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sheu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheu, Y., Marshall, L.M., Holton, K.F. et al. Abdominal body composition measured by quantitative computed tomography and risk of non-spine fractures: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int 24, 2231–2241 (2013). https://doi.org/10.1007/s00198-013-2322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2322-9

Keywords

Navigation