Skip to main content

Advertisement

Log in

High bone mineral apparent density in children with X-linked hypophosphatemia

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Bone mineral apparent density (BMAD) in children with X-linked hypophosphatemia (XLH) was evaluated, as they are unlikely to have extra-skeletal ossifications contributing to the elevated bone mineral density of the spine in adult patients. Children with XLH also had significantly higher BMAD of the spine compared to femoral neck.

Introduction

BMAD obtained by dual-energy X-ray absorptiometry scans in children with XLH was evaluated, as they are unlikely to have the extra-skeletal ossifications contributing to the elevated bone mineral density of the spine in adult patients.

Methods

A total of 15 children with biochemically and genetically verified XLH were recruited. Anthropometric measurements were performed, and to correct for the short stature (small bones), the BMAD of the spine and the femoral neck was evaluated.

Results

Z-scores of BMAD of the spine (mean (95 % CI); 2.0 (1.3–2.7); p < 0.001) were significantly elevated compared to reference children. Z-scores of the femoral neck (1.0 (−0.0 to 2.1); p = 0.059) tended to be elevated. Spine Z-scores were significantly higher than the Z-scores of the femoral neck, (paired t test, p = 0.02). BMAD of the spine was evaluated according to the Molgaard’s approach; XLH children had normal bone size of the spine for age due to a normal sitting height Z-score of −0.4 (−1.0 to 0.1); p = 0.1. Z-scores of bone mineral content (BMC) of the spine for bone area were elevated (1.4 (0.8–2.1); p < 0.001). No reference data were available to allow evaluation of the BMAD of the femoral neck by the Molgaard's approach.

Conclusions

Children with XLH have an increased BMAD and a high BMC for bone area at the lumbar spine, and this was due to causes other than extra-skeletal ossifications and corrected for bone size. The BMAD of the spine was significantly higher compared to the femoral neck.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  1. Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK (2009) Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol 160:491–497

    Article  PubMed  CAS  Google Scholar 

  2. Beck-Nielsen SS, Brixen K, Gram J, Brusgaard K (2012) Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J Hum Genet 57:453–458

    Article  PubMed  CAS  Google Scholar 

  3. Carpenter TO (2012) The expanding family of hypophosphatemic syndromes. J Bone Miner Metab 30:1–9

    Article  PubMed  CAS  Google Scholar 

  4. Rauch F (2003) The rachitic bone. Endocr Dev 6:69–79

    Article  PubMed  Google Scholar 

  5. Seeman E (1998) Growth in bone mass and size—are racial and gender differences in bone mineral density more apparent than real? J Clin Endocrinol Metab 83:1414–1419

    Article  PubMed  CAS  Google Scholar 

  6. Rauch F, Schoenau E (2001) Changes in bone density during childhood and adolescence: an approach based on bone's biological organization. J Bone MinerRes 16:597–604

    Article  CAS  Google Scholar 

  7. Binkovitz LA, Henwood MJ (2007) Pediatric DXA: technique and interpretation. Pediatr Radiol 37:21–31

    Article  PubMed  Google Scholar 

  8. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    Article  PubMed  CAS  Google Scholar 

  9. Molgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF (1997) Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 76:9–15

    Article  PubMed  CAS  Google Scholar 

  10. Ward KA, Ashby RL, Roberts SA, Adams JE, Zulf MM (2007) UK reference data for the Hologic QDR Discovery dual-energy X-ray absorptiometry scanner in healthy children and young adults aged 6–17 years. Arch Dis Child 92:53–59

    Article  PubMed  Google Scholar 

  11. Beck-Nielsen SS, Brusgaard K, Rasmussen LM et al (2010) Phenotype presentation of hypophosphatemic rickets in adults. Calcif Tissue Int 87:108–119

    Article  PubMed  CAS  Google Scholar 

  12. Rosenthall L (1993) DEXA bone densitometry measurements in adults with X-linked hypophosphatemia. Clin Nucl Med 18:564–566

    Article  PubMed  CAS  Google Scholar 

  13. Reid IR, Murphy WA, Hardy DC, Teitelbaum SL, Bergfeld MA, Whyte MP (1991) X-linked hypophosphatemia: skeletal mass in adults assessed by histomorphometry, computed tomography, and absorptiometry. Am J Med 90:63–69

    Article  PubMed  CAS  Google Scholar 

  14. Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G (2001) Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. J Pediatr 138:236–243

    Article  PubMed  CAS  Google Scholar 

  15. Oliveri MB, Cassinelli H, Bergada C, Mautalen CA (1991) Bone mineral density of the spine and radius shaft in children with X-linked hypophosphatemic rickets (XLH). Bone Miner 12:91–100

    Article  PubMed  CAS  Google Scholar 

  16. Shore RM, Langman CB, Poznanski AK (2000) Lumbar and radial bone mineral density in children and adolescents with X-linked hypophosphatemia: evaluation with dual X-ray absorptiometry. Skeletal Radiol 29:90–93

    Article  PubMed  CAS  Google Scholar 

  17. Baroncelli GI, Federico G, Bertelloni S, Sodini F, De TF, Cadossi R, Saggese G (2003) Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res 54:125–136

    Article  PubMed  Google Scholar 

  18. Block JE, Piel CF, Selvidge R, Genant HK (1989) Familial hypophosphatemic rickets: bone mass measurements in children following therapy with calcitriol and supplemental phosphate. Calcif Tissue Int 44:86–92

    Article  PubMed  CAS  Google Scholar 

  19. Saggese G, Baroncelli GI, Bertelloni S, Perri G (1995) Long-term growth hormone treatment in children with renal hypophosphatemic rickets: effects on growth, mineral metabolism, and bone density. J Pediatr 127:395–402

    Article  PubMed  CAS  Google Scholar 

  20. Andersen E, Hutchings B, Jansen J, Nyholm M (1982) Heights and weights of Danish children. Ugeskr Laeger 144:1760–1765

    PubMed  CAS  Google Scholar 

  21. Hertel NT, Scheike T, Juul A, Main KM, Holm K, Bach-Mortensen N, Skakkebaek NE, Muller JR (1995) Body proportions of Danish children. Curves for sitting height ratio, subischial length and arm span. Ugeskr Laeger 157:6876–6881

    PubMed  CAS  Google Scholar 

  22. McNair SL, Stickler GB (1969) Growth in familial hypophosphatemic vitamin-D-resistant rickets. N Engl J Med 281:512–516

    Article  PubMed  CAS  Google Scholar 

  23. Steendijk R, Herweijer TJ (1984) Height, sitting height and leg length in patients with hypophosphataemic rickets. Acta Paediatr Scand 73:181–184

    Article  PubMed  CAS  Google Scholar 

  24. Zivicnjak M, Schnabel D, Billing H et al (2011) Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr Nephrol 26:223–231

    Article  PubMed  Google Scholar 

  25. Glorieux FH, Marie PJ, Pettifor JM, Delvin EE (1980) Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. N Engl J Med 303:1023–1031

    Article  PubMed  CAS  Google Scholar 

  26. Sullivan W, Carpenter T, Glorieux F, Travers R, Insogna K (1992) A prospective trial of phosphate and 1,25-dihydroxyvitamin D3 therapy in symptomatic adults with X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 75:879–885

    Article  PubMed  CAS  Google Scholar 

  27. Rauch F (2006) Material matters: a mechanostat-based perspective on bone development in osteogenesis imperfecta and hypophosphatemic rickets. J Musculoskelet Neuronal Interact 6:142–146

    PubMed  CAS  Google Scholar 

  28. Frost HM (2003) Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275:1081–1101

    Article  PubMed  Google Scholar 

  29. Reusz GS, Miltenyi G, Stubnya G, Szabo A, Horvath C, Byrd DJ, Peter F, Tulassay T (1997) X-linked hypophosphatemia: effects of treatment with recombinant human growth hormone. Pediatr Nephrol 11:573–577

    Article  PubMed  CAS  Google Scholar 

  30. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA (1996) Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 59:344–351

    Article  PubMed  CAS  Google Scholar 

  31. Kroger H, Kotaniemi A, Vainio P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 17:75–85

    Article  PubMed  CAS  Google Scholar 

  32. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339

    Article  PubMed  CAS  Google Scholar 

  33. Berndt M, Ehrich JH, Lazovic D et al (1996) Clinical course of hypophosphatemic rickets in 23 adults. Clin Nephrol 45:33–41

    PubMed  CAS  Google Scholar 

  34. Hardy DC, Murphy WA, Siegel BA, Reid IR, Whyte MP (1989) X-linked hypophosphatemia in adults: prevalence of skeletal radiographic and scintigraphic features. Radiology 171:403–414

    PubMed  CAS  Google Scholar 

  35. Strom TM, Francis F, Lorenz B, Boddrich A, Econs MJ, Lehrach H, Meitinger T (1997) Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum Mol Genet 6:165–171

    Article  PubMed  CAS  Google Scholar 

  36. Li H, Martin A, David V, Quarles LD (2011) Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype. Am J Physiol Endocrinol Metab 300:E508–E517

    Article  PubMed  CAS  Google Scholar 

  37. Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP (1989) X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine (Baltimore) 68:336–352

    CAS  Google Scholar 

  38. Marie PJ, Glorieux FH (1981) Stimulation of cortical bone mineralization and remodeling by phosphate and 1,25-dihydroxyvitamin D in vitamin D-resistant rickets. Metab Bone Dis Relat Res 3:159–164

    Article  PubMed  CAS  Google Scholar 

  39. Harrison JE, Cumming WA, Fornasier V, Fraser D, Kooh SW, McNeill KG (1976) Increased bone mineral content in young adults with familial hypophosphatemic vitamin D refractory rickets. Metabolism 25:33–40

    Article  PubMed  CAS  Google Scholar 

  40. Marie PJ, Glorieux FH (1981) Histomorphometric study of bone remodeling in hypophosphatemic vitamin D-resistant rickets. Metab Bone Dis Relat Res 3:31–38

    Article  PubMed  CAS  Google Scholar 

  41. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL (2011) A clinician's guide to X-linked hypophosphatemia. J Bone Miner Res 26:1381–1388

    Article  PubMed  Google Scholar 

  42. Marie PJ, Travers R, Glorieux FH (1981) Healing of rickets with phosphate supplementation in the hypophosphatemic male mouse. J Clin Invest 67:911–914

    Article  PubMed  CAS  Google Scholar 

  43. Bianchi ML, Baim S, Bishop NJ, Gordon CM, Hans DB, Langman CB, Leonard MB, Kalkwarf HJ (2010) Official positions of the International Society for Clinical Densitometry (ISCD) on DXA evaluation in children and adolescents. Pediatr Nephrol 25:37–47

    Article  PubMed  Google Scholar 

  44. Zemel BS, Leonard MB, Kelly A et al (2010) Height adjustment in assessing dual energy X-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab 95:1265–1273

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was funded by grants from A.J. Andersen og Hustrus Fond, the A.P. Moeller Foundation for the Advancement of Medical Science, Herta Christensens Fond, Institute of Clinical Research, and Institute of Regional Health Services Research, University of Southern Denmark, Director Jacob Madsen og Hustru Olga Madsens Fond, Karola Joergensens Forskningsfond, K.A. Rohde og Hustrus legat, Simon Fougner Hartmanns Familiefond, Else Poulsens mindelegat.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Beck-Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck-Nielsen, S.S., Brixen, K., Gram, J. et al. High bone mineral apparent density in children with X-linked hypophosphatemia. Osteoporos Int 24, 2215–2221 (2013). https://doi.org/10.1007/s00198-013-2286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2286-9

Keywords

Navigation