Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D

Abstract

There is a need to understand the role of nutrition, beyond calcium and vitamin D, in the treatment and prevention of osteoporosis in adults. Results regarding soy compounds on bone density and bone turnover are inconclusive perhaps due to differences in dose and composition or in study population characteristics. The skeletal benefit of black cohosh and red clover are unknown. Dehydroepiandrosterone (DHEA) use may benefit elderly individuals with low serum dehydroepiandrosterone-sulfate levels, but even in this group, there are inconsistent benefits to bone density (BMD). Higher fruit and vegetable intakes may relate to higher BMD. The skeletal benefit of flavonoids, carotenoids, omega-3-fatty acids, and vitamins A, C, E and K are limited to observational data or a few clinical trials, in some cases investigating pharmacologic doses. Given limited data, it would be better to get these nutrients from fruits and vegetables. Potassium bicarbonate may improve calcium homeostasis but with little impact on bone loss. High homocysteine may relate to fracture risk, but the skeletal benefit of each B vitamin is unclear. Magnesium supplementation is likely only required in persons with low magnesium levels. Data are very limited for the role of nutritional levels of boron, strontium, silicon and phosphorus in bone health. A nutrient rich diet with adequate fruits and vegetables will generally meet skeletal needs in healthy individuals. For most healthy adults, supplementation with nutrients other than calcium and vitamin D may not be required, except in those with chronic disease and the frail elderly.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    National Academy of Sciences IoM (2010) Dietary reference intakes for calcium and vitamin D. IoM,

  2. 2.

    Foundation NO (2010) Clinician’s guide to prevention and treatment of osteoporosis. Washington, DC

    Google Scholar 

  3. 3.

    Rock CL (2007) Multivitamin-multimineral supplements: who uses them? Am J Clin Nutr 85:277S–279S

    PubMed  CAS  Google Scholar 

  4. 4.

    FDA (2009) Overview of dietary supplements. In. U.S. Department of Health and Human Services, Silver Spring, MD, 20993

    Google Scholar 

  5. 5.

    Kruse SO, Lohning A, Pauli GF, Winterhoff H, Nahrstedt A (1999) Fukiic and piscidic acid esters from the rhizome of Cimicifuga racemosa and the in vitro estrogenic activity of fukinolic acid. Planta Med 65:763–764

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Chun OK, Chung SJ, Song WO (2009) Urinary isoflavones and their metabolites validate the dietary isoflavone intakes in US adults. J Am Diet Assoc 109:245–254

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Messina M, Nagata C, Wu AH (2006) Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer 55:1–12

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Dietary Guidelines for Americans, (2010). In: Agriculture USDo, Services USDoHaH (eds), 7th edn. US Government Printing Office, Washington, DC

  9. 9.

    Atmaca A, Kleerekoper M, Bayraktar M, Kucuk O (2008) Soy isoflavones in the management of postmenopausal osteoporosis. Menopause 15:748–757

    PubMed  Article  Google Scholar 

  10. 10.

    Weaver CM, Martin BR, Jackson GS, McCabe GP, Nolan JR, McCabe LD, Barnes S, Reinwald S, Boris ME, Peacock M (2009) Antiresorptive effects of phytoestrogen supplements compared with estradiol or risedronate in postmenopausal women using (41)Ca methodology. J Clin Endocrinol Metab 94:3798–3805

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Zhang X, Shu XO, Li H, Yang G, Li Q, Gao YT, Zheng W (2005) Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch Intern Med 165:1890–1895

    PubMed  Article  Google Scholar 

  12. 12.

    Ma DF, Qin LQ, Wang PY, Katoh R (2008) Soy isoflavone intake increases bone mineral density in the spine of menopausal women: meta-analysis of randomized controlled trials. Clin Nutr 27:57–64

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Messina M, Ho S, Alekel DL (2004) Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr Opin Clin Nutr Metab Care 7:649–658

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Brink E, Coxam V, Robins S, Wahala K, Cassidy A, Branca F (2008) Long-term consumption of isoflavone-enriched foods does not affect bone mineral density, bone metabolism, or hormonal status in early postmenopausal women: a randomized, double-blind, placebo controlled study. Am J Clin Nutr 87:761–770

    PubMed  CAS  Google Scholar 

  15. 15.

    Alekel DL, Van Loan MD, Koehler KJ, Hanson LN, Stewart JW, Hanson KB, Kurzer MS, Peterson CT (2010) The soy isoflavones for reducing bone loss (SIRBL) study: a 3-y randomized controlled trial in postmenopausal women. Am J Clin Nutr 91:218–230

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Levis S, Strickman-Stein N, Ganjei-Azar P, Xu P, Doerge DR, Krischer J (2011) Soy isoflavones in the prevention of menopausal bone loss and menopausal symptoms: a randomized, double-blind trial. Arch Intern Med 171:1363–1369

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Kenny AM, Mangano KM, Abourizk RH, Bruno RS, Anamani DE, Kleppinger A, Walsh SJ, Prestwood KM, Kerstetter JE (2009) Soy proteins and isoflavones affect bone mineral density in older women: a randomized controlled trial. Am J Clin Nutr 90:234–242

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Wong WW, Lewis RD, Steinberg FM et al (2009) Soy isoflavone supplementation and bone mineral density in menopausal women: a 2-y multicenter clinical trial. Am J Clin Nutr 90:1433–1439

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Evans EM, Racette SB, Van Pelt RE, Peterson LR, Villareal DT (2007) Effects of soy protein isolate and moderate exercise on bone turnover and bone mineral density in postmenopausal women. Menopause 14:481-488

    Google Scholar 

  20. 20.

    Vupadhyayula PM, Gallagher JC, Templin T, Logsdon SM, Smith LM (2009) Effects of soy protein isolate on bone mineral density and physical performance indices in postmenopausal women—a 2-year randomized, double-blind, placebo-controlled trial. Menopause 16:320–328

    PubMed  Article  Google Scholar 

  21. 21.

    Morabito N, Crisafulli A, Vergara C et al (2002) Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J Bone Miner Res 17:1904–1912

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Marini H, Minutoli L, Polito F et al (2007) Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Ann Intern Med 146:839–847

    PubMed  Google Scholar 

  23. 23.

    Marini H, Bitto A, Altavilla D, et al. (2008) Breast safety and efficacy of genistein aglycone for post-menopausal bone loss: a follow-up study. J Clin Endocrinol Metab 93:4787-4796

    Google Scholar 

  24. 24.

    Messina M, Redmond G (2006) Effects of soy protein and soybean isoflavones on thyroid function in healthy adults and hypothyroid patients: a review of the relevant literature. Thyroid 16:249–258

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Taylor CK, Levy RM, Elliott JC, Burnett BP (2009) The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical and clinical studies. Nutr Rev 67:398-415

    Google Scholar 

  26. 26.

    Hooper L, Madhavan G, Tice JA, Leinster SJ, Cassidy A (2010) Effects of isoflavones on breast density in pre- and post-menopausal women: a systematic review and meta-analysis of randomized controlled trials. Hum Reprod Update 16:745–760

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Dong JY, Qin LQ (2011) Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 125:315–323

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Andres S, Abraham K, Appel KE, Lampen A (2011) Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol 41:463–506

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Lethaby AE, Brown J, Marjoribanks J, Kronenberg F, Roberts H, Eden J (2007) Phytoestrogens for vasomotor menopausal symptoms. Cochrane Database Syst Rev CD001395

  30. 30.

    Atkinson C, Oosthuizen W, Scollen S, Loktionov A, Day NE, Bingham SA (2004) Modest protective effects of isoflavones from a red clover-derived dietary supplement on cardiovascular disease risk factors in perimenopausal women, and evidence of an interaction with ApoE genotype in 49–65 year-old women. J Nutr 134:1759–1764

    PubMed  CAS  Google Scholar 

  31. 31.

    Booth NL, Piersen CE, Banuvar S, Geller SE, Shulman LP, Farnsworth NR (2006) Clinical studies of red clover (Trifolium pratense) dietary supplements in menopause: a literature review. Menopause 13:251–264

    PubMed  Article  Google Scholar 

  32. 32.

    Powles TJ, Howell A, Evans DG, McCloskey EV, Ashley S, Greenhalgh R, Affen J, Flook LA, Tidy A (2008) Red clover isoflavones are safe and well tolerated in women with a family history of breast cancer. Menopause Int 14:6–12

    PubMed  Article  Google Scholar 

  33. 33.

    Ohta H, Komukai S, Makita K, Masuzawa T, Nozawa S (1999) Effects of 1-year ipriflavone treatment on lumbar bone mineral density and bone metabolic markers in postmenopausal women with low bone mass. Horm Res 51:178–183

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Zhang X, Li SW, Wu JF, Dong CL, Zheng CX, Zhang YP, Du J (2010) Effects of ipriflavone on postmenopausal syndrome and osteoporosis. Gynecol Endocrinol 26:76–80

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Alexandersen P, Toussaint A, Christiansen C, Devogelaer JP, Roux C, Fechtenbaum J, Gennari C, Reginster JY (2001) Ipriflavone in the treatment of postmenopausal osteoporosis: a randomized controlled trial. Jama 285:1482–1488

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Ghebre MA, Hart DJ, Hakim AJ, Kato BS, Thompson V, Arden NK, Spector TD, Zhai G (2011) Association between DHEAS and bone loss in postmenopausal women: a 15-year longitudinal population-based study. Calcif Tissue Int 89:295–302

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Office of Dietary Supplements, National Institutes of Health, http://ods.od.nih.gov/factsheets/blackcohosh.asp (2010) http://ods.od.nih.gov/factsheets/blackcohosh.asp Accessed 7/26/10 2010

  38. 38.

    Qiu SX, Dan C, Ding LS, Peng S, Chen SN, Farnsworth NR, Nolta J, Gross ML, Zhou P (2007) A triterpene glycoside from black cohosh that inhibits osteoclastogenesis by modulating RANKL and TNFalpha signaling pathways. Chem Biol 14:860–869

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Wuttke W, Gorkow C, Seidlova-Wuttke D (2006) Effects of black cohosh (Cimicifuga racemosa) on bone turnover, vaginal mucosa, and various blood parameters in postmenopausal women: a double-blind, placebo-controlled, and conjugated estrogens-controlled study. Menopause 13:185–196

    PubMed  Article  Google Scholar 

  40. 40.

    Bebenek M, Kemmler W, von Stengel S, Engelke K, Kalender WA (2010) Effect of exercise and Cimicifuga racemosa (CR BNO 1055) on bone mineral density, 10-year coronary heart disease risk, and menopausal complaints: the randomized controlled Training and Cimicifuga racemosa Erlangen (TRACE) study. Menopause 17:791–800

    PubMed  Google Scholar 

  41. 41.

    Klein MA, Hartman TJ (2009) Guidance from an NIH workshop on designing, implementing, and reporting clinical studies of soy interventions. J Nutr 140:1192S-

    Google Scholar 

  42. 42.

    Wang YD, Tao MF, Cheng WW, Liu XH, Wan XP, Cui K (2012) Dehydroepiandrosterone indirectly inhibits human osteoclastic resorption via activating osteoblastic viability by the MAPK pathway. Chin Med J (Engl) 125:1230–1235

    CAS  Google Scholar 

  43. 43.

    Baulieu EE, Thomas G, Legrain S et al (2000) Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge Study to a sociobiomedical issue. Proc Natl Acad Sci U S A 97:4279–4284

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Morales AJ, Haubrich RH, Hwang JY, Asakura H, Yen SS (1998) The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin Endocrinol (Oxf) 49:421–432

    CAS  Article  Google Scholar 

  45. 45.

    von Muhlen D, Laughlin GA, Kritz-Silverstein D, Bergstrom J, Bettencourt R (2008) Effect of dehydroepiandrosterone supplementation on bone mineral density, bone markers, and body composition in older adults: the DAWN trial. Osteoporos Int 19:699–707

    Article  CAS  Google Scholar 

  46. 46.

    Villareal DT, Holloszy JO, Kohrt WM (2000) Effects of DHEA replacement on bone mineral density and body composition in elderly women and men. Clin Endocrinol (Oxf) 53:561–568

    CAS  Article  Google Scholar 

  47. 47.

    Nair KS, Rizza RA, O’Brien P et al (2006) DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med 355:1647–1659

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Sun Y, Mao M, Sun L, Feng Y, Yang J, Shen P (2002) Treatment of osteoporosis in men using dehydroepiandrosterone sulfate. Chin Med J (Engl) 115:402–404

    CAS  Google Scholar 

  49. 49.

    Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Welch A, Macgregor A, Jennings A, Fairweather-Tait S, Spector T, Cassidy A (2012) Habitual flavonoid intakes are positively associated with bone mineral density in women. J Bone Miner Res 27:1872–1878

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Hardcastle AC, Aucott L, Reid DM, Macdonald HM (2011) Associations between dietary flavonoid intakes and bone health in a Scottish population. J Bone Miner Res 26:941–947

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:5

    PubMed  Article  Google Scholar 

  53. 53.

    Wattel A, Kamel S, Prouillet C, Petit JP, Lorget F, Offord E, Brazier M (2004) Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J Cell Biochem 92:285–295

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Woo JT, Nakagawa H, Notoya M, Yonezawa T, Udagawa N, Lee IS, Ohnishi M, Hagiwara H, Nagai K (2004) Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol Pharm Bull 27:504–509

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M (2003) Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 65:35–42

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Hay AW, Hassam AG, Crawford MA, Stevens PA, Mawer EB, Jones FS (1980) Essential fatty acid restriction inhibits vitamin D-dependent calcium absorption. Lipids 15:251–254

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Hogstrom M, Nordstrom P, Nordstrom A (2007) n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr 85:803–807

    PubMed  Google Scholar 

  59. 59.

    Rousseau JH, Kleppinger A, Kenny AM (2009) Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function. J Am Geriatr Soc 57:1781–1788

    PubMed  Article  Google Scholar 

  60. 60.

    Salari P, Rezaie A, Larijani B, Abdollahi M (2008) A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med Sci Monit 14:37–44

    Google Scholar 

  61. 61.

    Jarvinen R, Tuppurainen M, Erkkila AT, Penttinen P, Karkkainen M, Salovaara K, Jurvelin JS, Kroger H (2012) Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr 66:496–503

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Eriksson S, Mellstrom D, Strandvik B (2009) Fatty acid pattern in serum is associated with bone mineralisation in healthy 8-year-old children. Br J Nutr 102:407–412

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Weiss LA, Barrett-Connor E, von Muhlen D (2005) Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study. Am J Clin Nutr 81:934–938

    PubMed  CAS  Google Scholar 

  64. 64.

    Orchard TS, Pan X, Cheek F, Ing SW, Jackson RD (2012) A systematic review of omega-3 fatty acids and osteoporosis. Br J Nutr 107(Suppl 2):S253–S260

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Marik PE, Flemmer M (2012) Do dietary supplements have beneficial health effects in industrialized nations: what is the evidence? JPEN J Parenter Enteral Nutr 36:159–168

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Yang Z, Zhang Z, Penniston KL, Binkley N, Tanumihardjo SA (2008) Serum carotenoid concentrations in postmenopausal women from the United States with and without osteoporosis. Int J Vitam Nutr Res 78:105–111

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Wolf RL, Cauley JA, Pettinger M et al (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 82:581–588

    PubMed  CAS  Google Scholar 

  68. 68.

    Barker ME, McCloskey E, Saha S, Gossiel F, Charlesworth D, Powers HJ, Blumsohn A (2005) Serum retinoids and beta-carotene as predictors of hip and other fractures in elderly women. J Bone Miner Res 20:913–920

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Pasco JA, Henry MJ, Wilkinson LK, Nicholson GC, Schneider HG, Kotowicz MA (2006) Antioxidant vitamin supplements and markers of bone turnover in a community sample of nonsmoking women. J Womens Health (Larchmt) 15:295–300

    Article  Google Scholar 

  70. 70.

    Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL (2009) Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res 24:1086–1094

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Feskanich D, Singh V, Willett WC, Colditz GA (2002) Vitamin A intake and hip fractures among postmenopausal women. Jama 287:47–54

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Melhus H, Michaelsson K, Kindmark A, Bergstrom R, Holmberg L, Mallmin H, Wolk A, Ljunghall S (1998) Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture. Ann Intern Med 129:770–778

    PubMed  CAS  Google Scholar 

  73. 73.

    Michaelsson K, Lithell H, Vessby B, Melhus H (2003) Serum retinol levels and the risk of fracture. N Engl J Med 348:287–294

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Promislow JH, Goodman-Gruen D, Slymen DJ, Barrett-Connor E (2002) Retinol intake and bone mineral density in the elderly: the Rancho Bernardo Study. J Bone Miner Res 17:1349–1358

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Ballew C, Galuska D, Gillespie C (2001) High serum retinyl esters are not associated with reduced bone mineral density in the Third National Health and Nutrition Examination Survey, 1988–1994. J Bone Miner Res 16:2306–2312

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Chuin A, Labonte M, Tessier D, Khalil A, Bobeuf F, Doyon CY, Rieth N, Dionne IJ (2009) Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study. Osteoporos Int 20:1253–1258

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79:155–165

    PubMed  CAS  Google Scholar 

  78. 78.

    Kaptoge S, Welch A, McTaggart A, Mulligan A, Dalzell N, Day NE, Bingham S, Khaw KT, Reeve J (2003) Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. Osteoporos Int 14:418–428

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Weber P (1999) The role of vitamins in the prevention of osteoporosis—a brief status report. Int J Vitam Nutr Res 69:194–197

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Leveille SG, LaCroix AZ, Koepsell TD, Beresford SA, Van Belle G, Buchner DM (1997) Dietary vitamin C and bone mineral density in postmenopausal women in Washington State, USA. J Epidemiol Community Health 51:479–485

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Hernandez-Avila M, Stampfer MJ, Ravnikar VA, Willett WC, Schiff I, Francis M, Longcope C, McKinlay SM, Longscope C (1993) Caffeine and other predictors of bone density among pre- and perimenopausal women. Epidemiology 4:128–134

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Freudenheim JL, Johnson NE, Smith EL (1986) Relationships between usual nutrient intake and bone-mineral content of women 35–65 years of age: longitudinal and cross-sectional analysis. Am J Clin Nutr 44:863–876

    PubMed  CAS  Google Scholar 

  83. 83.

    Sowers MR, Wallace RB, Lemke JH (1985) Correlates of mid-radius bone density among postmenopausal women: a community study. Am J Clin Nutr 41:1045–1053

    PubMed  CAS  Google Scholar 

  84. 84.

    Odland LM, Mason RL, Alexeff AI (1972) Bone density and dietary findings of 409 Tennessee subjects. 1. Bone density considerations. Am J Clin Nutr 25:905–907

    PubMed  CAS  Google Scholar 

  85. 85.

    Hall SL, Greendale GA (1998) The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study. Calcif Tissue Int 63:183–189

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Prynne CJ, Mishra GD, O’Connell MA, Muniz G, Laskey MA, Yan L, Prentice A, Ginty F (2006) Fruit and vegetable intakes and bone mineral status: a cross sectional study in 5 age and sex cohorts. Am J Clin Nutr 83:1420–1428

    PubMed  CAS  Google Scholar 

  87. 87.

    New SA, Bolton-Smith C, Grubb DA, Reid DM (1997) Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 65:1831–1839

    PubMed  CAS  Google Scholar 

  88. 88.

    Tucker KL, Chen H, Hannan MT, Cupples LA, Wilson PW, Felson D, Kiel DP (2002) Bone mineral density and dietary patterns in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 76:245–252

    PubMed  CAS  Google Scholar 

  89. 89.

    Sahni S, Hannan MT, Gagnon D, Blumberg J, Cupples LA, Kiel DP, Tucker KL (2008) High vitamin C intake is associated with lower 4-year bone loss in elderly men. J Nutr 138:1931–1938

    PubMed  CAS  Google Scholar 

  90. 90.

    Sahni S, Hannan MT, Gagnon D, Blumberg J, Cupples LA, Kiel DP, Tucker KL (2009) Protective effect of total and supplemental vitamin C intake on the risk of hip fracture–a 17-year follow-up from the Framingham Osteoporosis Study. Osteoporos Int 20:1853–1861

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Binkley N, Harke J, Krueger D, Engelke J, Vallarta-Ast N, Gemar D, Checovich M, Chappell R, Suttie J (2009) Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. J Bone Miner Res 24:983–991

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Feskanich D, Weber P, Willett WC, Rockett H, Booth SL, Colditz GA (1999) Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr 69:74–79

    PubMed  CAS  Google Scholar 

  93. 93.

    Booth SL, Broe KE, Gagnon DR, Tucker KL, Hannan MT, McLean RR, Dawson-Hughes B, Wilson PW, Cupples LA, Kiel DP (2003) Vitamin K intake and bone mineral density in women and men. Am J Clin Nutr 77:512–516

    PubMed  CAS  Google Scholar 

  94. 94.

    Booth SL, Tucker KL, Chen H et al (2000) Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 71:1201–1208

    PubMed  CAS  Google Scholar 

  95. 95.

    Cheung AM, Tile L, Lee Y et al (2008) Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Med 5:e196

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Braam LA, Knapen MH, Geusens P, Brouns F, Hamulyak K, Gerichhausen MJ, Vermeer C (2003) Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcif Tissue Int 73:21–26

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Emaus N, Gjesdal CG, Almas B, Christensen M, Grimsgaard AS, Berntsen GK, Salomonsen L, Fonnebo V (2010) Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial. Osteoporos Int 21:1731–1740

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Bolton-Smith C, McMurdo ME, Paterson CR, Mole PA, Harvey JM, Fenton ST, Prynne CJ, Mishra GD, Shearer MJ (2007) Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone Miner Res 22:509–519

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Booth SL, Dallal G, Shea MK, Gundberg C, Peterson JW, Dawson-Hughes B (2008) Effect of vitamin K supplementation on bone loss in elderly men and women. J Clin Endocrinol Metab 93:1217–1223

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ (2006) Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 166:1256–1261

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Inoue T, Fujita T, Kishimoto H, Makino T, Nakamura T, Sato T, Yamazaki K (2009) Randomized controlled study on the prevention of osteoporotic fractures (OF study): a phase IV clinical study of 15-mg menatetrenone capsules. J Bone Miner Metab 27:66–75

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Orimo H, Shiraki M, Tomita A, Morii H, Fujita T, Ohata M (1998) Effects of menatetrenone on the bone and calcium metabolism in osteoporosis: a double-blind placebo-controlled study. J Bone Miner Metab 16:106–112

    CAS  Article  Google Scholar 

  103. 103.

    Shiraki M, Shiraki Y, Aoki C, Miura M (2000) Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res 15:515–521

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Iwamoto J, Sato Y, Takeda T, Matsumoto H (2009) High-dose vitamin K supplementation reduces fracture incidence in postmenopausal women: a review of the literature. Nutr Res 29:221–228

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP (1999) Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 69:727–736

    PubMed  CAS  Google Scholar 

  106. 106.

    Arnett TR, Dempster DW (1986) Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 119:119–124

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Bushinsky DA (1996) Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol 271:F216–F222

    PubMed  CAS  Google Scholar 

  108. 108.

    He FJ, Marciniak M, Carney C, Markandu ND, Anand V, Fraser WD, Dalton RN, Kaski JC, MacGregor GA (2010) Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives. Hypertension 55:681–688

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Ceglia L, Harris SS, Abrams SA, Rasmussen HM, Dallal GE, Dawson-Hughes B (2009) Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J Clin Endocrinol Metab 94:645–653

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Dawson-Hughes B, Harris SS, Palermo NJ, Castaneda-Sceppa C, Rasmussen HM, Dallal GE (2009) Treatment with potassium bicarbonate lowers calcium excretion and bone resorption in older men and women. J Clin Endocrinol Metab 94:96–102

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Macdonald HM, Black AJ, Aucott L, Duthie G, Duthie S, Sandison R, Hardcastle AC, Lanham New SA, Fraser WD, Reid DM (2008) Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr 88:465–474

    PubMed  CAS  Google Scholar 

  112. 112.

    van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM et al (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350:2033–2041

    PubMed  Article  Google Scholar 

  113. 113.

    Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Drevon CA, Gjessing HK, Tell GS (2006) Plasma total homocysteine level and bone mineral density: the Hordaland Homocysteine Study. Arch Intern Med 166:88–94

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Dhonukshe-Rutten RA, Pluijm SM, de Groot LC, Lips P, Smit JH, van Staveren WA (2005) Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people. J Bone Miner Res 20:921–929

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, Hannan MT, Cupples LA, Kiel DP (2004) Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 350:2042–2049

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Ravaglia G, Forti P, Maioli F, Servadei L, Martelli M, Brunetti N, Bastagli L, Cucinotta D, Mariani E (2005) Folate, but not homocysteine, predicts the risk of fracture in elderly persons. J Gerontol A Biol Sci Med Sci 60:1458–1462

    PubMed  Article  Google Scholar 

  117. 117.

    Tucker KL, Hannan MT, Qiao N, Jacques PF, Selhub J, Cupples LA, Kiel DP (2005) Low plasma vitamin B12 is associated with lower BMD: the Framingham Osteoporosis Study. J Bone Miner Res 20:152–158

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Dhonukshe-Rutten RA, Lips M, de Jong N, Chin APMJ, Hiddink GJ, van Dusseldorp M, De Groot LC, van Staveren WA (2003) Vitamin B-12 status is associated with bone mineral content and bone mineral density in frail elderly women but not in men. J Nutr 133:801–807

    PubMed  CAS  Google Scholar 

  119. 119.

    Morris MS, Jacques PF, Selhub J (2005) Relation between homocysteine and B-vitamin status indicators and bone mineral density in older Americans. Bone 37:234–242

    PubMed  CAS  Article  Google Scholar 

  120. 120.

    Stone KL, Bauer DC, Sellmeyer D, Cummings SR (2004) Low serum vitamin B-12 levels are associated with increased hip bone loss in older women: a prospective study. J Clin Endocrinol Metab 89:1217–1221

    PubMed  CAS  Article  Google Scholar 

  121. 121.

    McLean RR, Jacques PF, Selhub J, Fredman L, Tucker KL, Samelson EJ, Kiel DP, Cupples LA, Hannan MT (2008) Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women. J Clin Endocrinol Metab 93:2206–2212

    PubMed  CAS  Article  Google Scholar 

  122. 122.

    Refsum H, Nurk E, Smith AD, Ueland PM, Gjesdal CG, Bjelland I, Tverdal A, Tell GS, Nygard O, Vollset SE (2006) The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr 136:1731S–1740S

    PubMed  CAS  Google Scholar 

  123. 123.

    Baines M, Kredan MB, Davison A, Higgins G, West C, Fraser WD, Ranganath LR (2007) The association between cysteine, bone turnover, and low bone mass. Calcif Tissue Int 81:450–454

    PubMed  CAS  Article  Google Scholar 

  124. 124.

    Cagnacci A, Bagni B, Zini A, Cannoletta M, Generali M, Volpe A (2008) Relation of folates, vitamin B12 and homocysteine to vertebral bone mineral density change in postmenopausal women. A five-year longitudinal evaluation. Bone 42:314–320

    PubMed  CAS  Article  Google Scholar 

  125. 125.

    Cagnacci A, Baldassari F, Rivolta G, Arangino S, Volpe A (2003) Relation of homocysteine, folate, and vitamin B12 to bone mineral density of postmenopausal women. Bone 33:956–959

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Rejnmark L, Vestergaard P, Hermann AP, Brot C, Eiken P, Mosekilde L (2008) Dietary intake of folate, but not vitamin B2 or B12, is associated with increased bone mineral density 5 years after the menopause: results from a 10-year follow-up study in early postmenopausal women. Calcif Tissue Int 82:1–11

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Herrmann M, Stanger O, Paulweber B, Hufnagl C, Herrmann W (2006) Folate supplementation does not affect biochemical markers of bone turnover. Clin Lab 52:131–136

    PubMed  CAS  Google Scholar 

  128. 128.

    Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K (2005) Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. Jama 293:1082–1088

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    McLean RR, Hannan MT (2007) B vitamins, homocysteine, and bone disease: epidemiology and pathophysiology. Curr Osteoporos Rep 5:112–119

    PubMed  Article  Google Scholar 

  130. 130.

    van Wijngaarden JP, Dhonukshe-Rutten RA, van Schoor NM et al (2011) Rationale and design of the B-PROOF study, a randomized controlled trial on the effect of supplemental intake of vitamin B12 and folic acid on fracture incidence. BMC Geriatr 11:80

    PubMed  Article  CAS  Google Scholar 

  131. 131.

    Nicklas TA, O’Neil CE, Fulgoni VL 3rd (2009) The role of dairy in meeting the recommendations for shortfall nutrients in the American diet. J Am Coll Nutr 28(Suppl 1):73S–81S

    PubMed  CAS  Google Scholar 

  132. 132.

    Wang MC, Moore EC, Crawford PB, Hudes M, Sabry ZI, Marcus R, Bachrach LK (1999) Influence of pre-adolescent diet on quantitative ultrasound measurements of the calcaneus in young adult women. Osteoporos Int 9:532–535

    PubMed  CAS  Google Scholar 

  133. 133.

    Carpenter TO, DeLucia MC, Zhang JH, Bejnerowicz G, Tartamella L, Dziura J, Petersen KF, Befroy D, Cohen D (2006) A randomized controlled study of effects of dietary magnesium oxide supplementation on bone mineral content in healthy girls. J Clin Endocrinol Metab 91:4866–4872

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Song CH, Barrett-Connor E, Chung JH, Kim SH, Kim KS (2007) Associations of calcium and magnesium in serum and hair with bone mineral density in premenopausal women. Biol Trace Elem Res 118:1–9

    PubMed  CAS  Article  Google Scholar 

  135. 135.

    New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ, Reid DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71:142–151

    PubMed  CAS  Google Scholar 

  136. 136.

    Houtkooper LB, Ritenbaugh C, Aickin M, Lohman TG, Going SB, Weber JL, Greaves KA, Boyden TW, Pamenter RW, Hall MC (1995) Nutrients, body composition and exercise are related to change in bone mineral density in premenopausal women. J Nutr 125:1229–1237

    PubMed  CAS  Google Scholar 

  137. 137.

    Tranquilli AL, Lucino E, Garzetti GG, Romanini C (1994) Calcium, phosphorus and magnesium intakes correlate with bone mineral content in postmenopausal women. Gynecol Endocrinol 8:55–58

    PubMed  CAS  Article  Google Scholar 

  138. 138.

    Ryder KM, Shorr RI, Bush AJ, Kritchevsky SB, Harris T, Stone K, Cauley J, Tylavsky FA (2005) Magnesium intake from food and supplements is associated with bone mineral density in healthy older white subjects. J Am Geriatr Soc 53:1875–1880

    PubMed  Article  Google Scholar 

  139. 139.

    Nielsen FH (1990) Studies on the relationship between boron and magnesium which possibly affects the formation and maintenance of bones. Magnes Trace Elem 9:61–69

    PubMed  CAS  Article  Google Scholar 

  140. 140.

    Stendig-Lindberg G, Tepper R, Leichter I (1993) Trabecular bone density in a two year controlled trial of peroral magnesium in osteoporosis. Magnes Res 6:155–163

    PubMed  CAS  Google Scholar 

  141. 141.

    Jackson R, Bassford T, Cauley J, Chen C, La Croix AZ, Sparks A, Wactawski-Wende J (2003) The impact of magnesium intake on fractures: results from the women’s health initiative observational study (WHI-OS). ASBMR p 31

  142. 142.

    Durlach J, Bac P, Durlach V, Rayssiguier Y, Bara M, Guiet-Bara A (1998) Magnesium status and ageing: an update. Magnes Res 11:25–42

    PubMed  CAS  Google Scholar 

  143. 143.

    Rude RK, Olerich M (1996) Magnesium deficiency: possible role in osteoporosis associated with gluten-sensitive enteropathy. Osteoporos Int 6:453–461

    PubMed  CAS  Article  Google Scholar 

  144. 144.

    Nielsen FH (2008) Is boron nutritionally relevant? Nutr Rev 66:183–191

    PubMed  Article  Google Scholar 

  145. 145.

    Nielsen FH (1998) The justification for providing dietary guidance for the nutritional intake of boron. Biol Trace Elem Res 66:319–330

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    Sutherland B, Strong P, King JC (1998) Determining human dietary requirements for boron. Biol Trace Elem Res 66:193–204

    PubMed  CAS  Article  Google Scholar 

  147. 147.

    Nielsen FH, Hunt CD, Mullen LM, Hunt JR (1987) Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. FASEB J 1:394–397

    PubMed  CAS  Google Scholar 

  148. 148.

    Hunt CD, Herbel JL, Nielsen FH (1997) Metabolic responses of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium, and magnesium absorption and retention and blood mineral concentrations. Am J Clin Nutr 65:803–813

    PubMed  CAS  Google Scholar 

  149. 149.

    Jugdaohsingh R (2007) Silicon and bone health. J Nutr Health Aging 11:99–110

    PubMed  CAS  Google Scholar 

  150. 150.

    Micronutrients Po, Nutrients SoURLo, Interpretation o, Intakes UoDR, Intakes SCotSEoDR (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. The National Academies Press, Washington, DC

  151. 151.

    McNaughton SA, Bolton-Smith C, Mishra GD, Jugdaohsingh R, Powell JJ (2005) Dietary silicon intake in post-menopausal women. Br J Nutr 94:813–817

    PubMed  CAS  Article  Google Scholar 

  152. 152.

    Bisse E, Epting T, Beil A, Lindinger G, Lang H, Wieland H (2005) Reference values for serum silicon in adults. Anal Biochem 337:130–135

    PubMed  CAS  Article  Google Scholar 

  153. 153.

    Jugdaohsingh R, Tucker KL, Qiao N, Cupples LA, Kiel DP, Powell JJ (2004) Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res 19:297–307

    PubMed  CAS  Article  Google Scholar 

  154. 154.

    Tucker KL, Jugdaohsingh R, Powell JJ, Qiao N, Hannan MT, Sripanyakorn S, Cupples LA, Kiel DP (2009) Effects of beer, wine, and liquor intakes on bone mineral density in older men and women. Am J Clin Nutr 89:1188–1196

    PubMed  CAS  Article  Google Scholar 

  155. 155.

    Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

    PubMed  CAS  Article  Google Scholar 

  156. 156.

    Reginster JY, Felsenberg D, Boonen S et al (2008) Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum 58:1687–1695

    PubMed  CAS  Article  Google Scholar 

  157. 157.

    Calvo MS, Carpenter TO (2003) Nutritional aspects of bone health. In: Bonjour SINJ-P (ed) Influence of phosphorus on the skeleton. Royal Chemistry Society, Cambridge, UK, pp 229–265

    Google Scholar 

  158. 158.

    Tucker KL, Morita K, Qiao N, Hannan MT, Cupples LA, Kiel DP (2006) Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: the Framingham Osteoporosis Study. Am J Clin Nutr 84:936–942

    PubMed  CAS  Google Scholar 

  159. 159.

    Pinheiro MM, Schuch NJ, Genaro PS, Ciconelli RM, Ferraz MB, Martini LA (2009) Nutrient intakes related to osteoporotic fractures in men and women—the Brazilian Osteoporosis Study (BRAZOS). Nutr J 8:6

    PubMed  Article  CAS  Google Scholar 

  160. 160.

    Meier C, Kranzlin ME (2011) Calcium supplementation, osteoporosis and cardiovascular disease. Swiss Med Wkly 141:w13260

    PubMed  Google Scholar 

  161. 161.

    Reid IR, Bolland MJ, Avenell A, Grey A (2011) Cardiovascular effects of calcium supplementation. Osteoporos Int 22:1649–1658

    PubMed  CAS  Article  Google Scholar 

  162. 162.

    Burckhardt P (2011) Potential negative cardiovascular effects of calcium supplements. Osteoporos Int 22:1645–1647

    PubMed  CAS  Article  Google Scholar 

  163. 163.

    Shea B, Wells G, Cranney A et al (2002) Meta-analyses of therapies for postmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocr Rev 23:552–559

    PubMed  CAS  Article  Google Scholar 

  164. 164.

    Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A (2007) Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 370:657–666

    PubMed  CAS  Article  Google Scholar 

  165. 165.

    Chung M, Balk EM, Brendel M, et al. (2009) Vitamin D and calcium: a systematic review of health outcomes. Evid Rep Technol Assess (Full Rep) 1–420

  166. 166.

    Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B (2005) Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. Jama 293:2257–2264

    PubMed  CAS  Article  Google Scholar 

  167. 167.

    Spangler M, Phillips BB, Ross MB, Moores KG (2011) Calcium supplementation in postmenopausal women to reduce the risk of osteoporotic fractures. Am J Health Syst Pharm 68:309–318

    PubMed  CAS  Article  Google Scholar 

  168. 168.

    Reid IR, Bolland MJ, Grey A (2008) Effect of calcium supplementation on hip fractures. Osteoporos Int 19:1119–1123

    PubMed  CAS  Article  Google Scholar 

  169. 169.

    Foundation NO (2008) Clinicians guide for prevention and treatment of osteoporosis. NOF, Washington, DC

    Google Scholar 

  170. 170.

    Heaney RP, Dowell MS, Hale CA, Bendich A (2003) Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 22:142–146

    PubMed  CAS  Google Scholar 

  171. 171.

    Bischoff HA, Stahelin HB, Dick W et al (2003) Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res 18:343–351

    PubMed  CAS  Article  Google Scholar 

  172. 172.

    Bischoff-Ferrari HA, Zhang Y, Kiel DP, Felson DT (2005) Positive association between serum 25-hydroxyvitamin D level and bone density in osteoarthritis. Arthritis Rheum 53:821–826

    PubMed  CAS  Article  Google Scholar 

  173. 173.

    Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, Dawson-Hughes B (2004) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or =60 y. Am J Clin Nutr 80:752–758

    PubMed  CAS  Google Scholar 

  174. 174.

    Boonen S, Lips P, Bouillon R, Bischoff-Ferrari HA, Vanderschueren D, Haentjens P (2007) Need for additional calcium to reduce the risk of hip fracture with vitamin d supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab 92:1415–1423

    PubMed  CAS  Article  Google Scholar 

  175. 175.

    Avenell A, Gillespie WJ, Gillespie LD, O’Connell D (2009) Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev CD000227

  176. 176.

    The DIPART, B Abrahamsen (2010) Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture trials in US and Europe. BMJ 340:b5463

Download references

Conflicts of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. W. Nieves.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nieves, J.W. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D. Osteoporos Int 24, 771–786 (2013). https://doi.org/10.1007/s00198-012-2214-4

Download citation

Keywords

  • Bone density
  • Fractures
  • Minerals
  • Nutraceuticals
  • Nutrition
  • Vitamins