A higher alkaline dietary load is associated with greater indexes of skeletal muscle mass in women

Abstract

Summary

Conservation of muscle mass is important for fall and fracture prevention but further understanding of the causes of age-related muscle loss is required. This study found a more alkaline diet was positively associated with muscle mass in women suggesting a role for dietary acid–base load in muscle loss.

Introduction

Conservation of skeletal muscle is important for preventing falls and fractures but age-related loss of muscle mass occurs even in healthy individuals. However, the mild metabolic acidosis associated with an acidogenic dietary acid–base load could influence loss of muscle mass.

Methods

We investigated the association between fat-free mass (FFM), percentage FFM (FFM%) and fat-free mass index (FFMI, weight/height2), measured using dual-energy X-ray absorptiometry in 2,689 women aged 18–79 years from the TwinsUK Study, and dietary acid–base load. Body composition was calculated according to quartile of potential renal acid load and adjusted for age, physical activity, misreporting and smoking habit (FFM, FFMI also for fat mass) and additionally with percentage protein.

Results

Fat-free mass was positively associated with a more alkalinogenic dietary load (comparing quartile 1 vs 4: FFM 0.79 kg P < 0.001, FFM% 1.06 % <0.001, FFMI 0.24 kg/m2 P = 0.002), and with the ratio of fruits and vegetables to potential acidogenic foods.

Conclusions

We observed a small but significant positive association between a more alkaline diet and muscle mass indexes in healthy women that was independent of age, physical activity and protein intake equating to a scale of effect between a fifth and one half of the observed relationship with 10 years of age. Although protein is important for maintenance of muscle mass, eating fruits and vegetables that supply adequate amounts of potassium and magnesium are also relevant. The results suggest a potential role for diet in the prevention of muscle loss.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84(3):475–482

    PubMed  CAS  Google Scholar 

  2. 2.

    Beenakker KG, Ling CH, Meskers CG, de Craen AJ, Stijnen T, Westendorp RG, Maier AB (2010) Patterns of muscle strength loss with age in the general population and patients with a chronic inflammatory state. Ageing Res Rev 9(4):431–436. doi:10.1016/j.arr.2010.05.005

    PubMed  Article  Google Scholar 

  3. 3.

    Morley JE, Argiles JM, Evans WJ, Bhasin S, Cella D, Deutz NE, Doehner W, Fearon KC, Ferrucci L, Hellerstein MK, Kalantar-Zadeh K, Lochs H, MacDonald N, Mulligan K, Muscaritoli M, Ponikowski P, Posthauer ME, Rossi Fanelli F, Schambelan M, Schols AM, Schuster MW, Anker SD (2010) Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc 11(6):391–396. doi:10.1016/j.jamda.2010.04.014

    PubMed  Article  Google Scholar 

  4. 4.

    Harvey N, Dennison E, Cooper C (2010) Osteoporosis: impact on health and economics. Nat Rev Rheumatol 6(2):99–105. doi:10.1038/nrrheum.2009.260

    PubMed  Article  Google Scholar 

  5. 5.

    Foundation IO (2010) Facts and statistics about osteoporosis and its impact. http://www.iofbonehealth.org/facts-and-statistics.html. Accessed 14/01/11 2010

  6. 6.

    Bogl LH, Latvala A, Kaprio J, Sovijarvi O, Rissanen A, Pietilainen KH An investigation into the relationship between soft tissue body composition and bone mineral density in a young adult twin sample. J Bone Miner Res 26 (1):79–87. doi:10.1002/jbmr.192

  7. 7.

    MacInnis RJ, Cassar C, Nowson CA, Paton LM, Flicker L, Hopper JL, Larkins RG, Wark JD (2003) Determinants of bone density in 30- to 65-year-old women: a co-twin study. J Bone Miner Res 18(9):1650–1656. doi:10.1359/jbmr.2003.18.9.1650

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA (1995) Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res 10(11):1762–1768. doi:10.1002/jbmr.5650101120

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Arden NK, Spector TD (1997) Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 12(12):2076–2081. doi:10.1359/jbmr.1997.12.12.2076

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Rolland Y, Lauwers-Cances V, Cristini C, Abellan van Kan G, Janssen I, Morley JE, Vellas B (2009) Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l'OSteoporose) Study. Am J Clin Nutr 89(6):1895–1900. doi:10.3945/ajcn.2008.26950

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Mitch WE (1996) Metabolic acidosis stimulates protein metabolism in uremia. Miner Electrolyte Metab 22(1–3):62–65

    PubMed  CAS  Google Scholar 

  12. 12.

    Workeneh BT, Rondon-Berrios H, Zhang L, Hu Z, Ayehu G, Ferrando A, Kopple JD, Wang H, Storer T, Fournier M, Lee SW, Du J, Mitch WE (2006) Development of a diagnostic method for detecting increased muscle protein degradation in patients with catabolic conditions. J Am Soc Nephrol 17(11):3233–3239. doi:10.1681/ASN.2006020131

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Scott D, Blizzard L, Fell J, Ding C, Winzenberg T, Jones G (2010) A prospective study of the associations between 25-hydroxy-vitamin D, sarcopenia progression and physical activity in older adults. Clin Endocrinol (Oxf) 73(5):581–587. doi:10.1111/j.1365-2265.2010.03858.x

    Article  CAS  Google Scholar 

  14. 14.

    Wackerhage H, Rennie MJ (2006) How nutrition and exercise maintain the human musculoskeletal mass. J Anat 208(4):451–458. doi:10.1111/j.1469-7580.2006.00544.x

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR (2008) Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 87(5):1562S–1566S. doi:87/5/1562S [pii]

    PubMed  CAS  Google Scholar 

  16. 16.

    Meng X, Zhu K, Devine A, Kerr DA, Binns CW, Prince RL (2009) A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women. J Bone Miner Res 24(11):1827–1834. doi:10.1359/jbmr.090513

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Welch AA, Mulligan A, Bingham SA, Khaw KT (2008) Urine pH is an indicator of dietary acid–base load, fruit and vegetables and meat intakes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study. Br J Nutr 99(6):1335–1343. doi:10.1017/S0007114507862350

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Remer T, Manz F (1995) Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc 95(7):791–797. doi:10.1016/S0002-8223(95)00219-7

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Frassetto LA, Todd KM, Morris RC Jr, Sebastian A (1998) Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr 68(3):576–583

    PubMed  CAS  Google Scholar 

  20. 20.

    Alexy U, Remer T, Manz F, Neu CM, Schoenau E (2005) Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr 82(5):1107–1114

    PubMed  CAS  Google Scholar 

  21. 21.

    Macdonald HM, New SA, Fraser WD, Campbell MK, Reid DM (2005) Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr 81(4):923–933

    PubMed  CAS  Google Scholar 

  22. 22.

    New SA, MacDonald HM, Campbell MK, Martin JC, Garton MJ, Robins SP, Reid DM (2004) Lower estimates of net endogenous non-carbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women. Am J Clin Nutr 79(1):131–138

    PubMed  CAS  Google Scholar 

  23. 23.

    Welch AA, Bingham SA, Reeve J, Khaw KT (2007) More acidic dietary acid–base load is associated with reduced calcaneal broadband ultrasound attenuation in women but not in men: results from the EPIC-Norfolk cohort study. Am J Clin Nutr 85(4):1134–1141

    PubMed  CAS  Google Scholar 

  24. 24.

    Ceglia L, Harris SS, Abrams SA, Rasmussen HM, Dallal GE, Dawson-Hughes B (2009) Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J Clin Endocrinol Metab 94(2):645–653. doi:10.1210/jc.2008-1796

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Frassetto L, Morris RC Jr, Sebastian A (1997) Potassium bicarbonate reduces urinary nitrogen excretion in postmenopausal women. J Clin Endocrinol Metab 82(1):254–259

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Dawson-Hughes B, Harris SS, Ceglia L (2008) Alkaline diets favor lean tissue mass in older adults. Am J Clin Nutr 87(3):662–665

    PubMed  CAS  Google Scholar 

  27. 27.

    Workeneh BT, Mitch WE (2010) Review of muscle wasting associated with chronic kidney disease. Am J Clin Nutr 91(4):1128S–1132S. doi:10.3945/ajcn.2010.28608B

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Cassidy A, Skidmore P, Rimm EB, Welch A, Fairweather-Tait S, Skinner J, Burling K, Richards JB, Spector TD, MacGregor AJ (2009) Plasma adiponectin concentrations are associated with body composition and plant-based dietary factors in female twins. J Nutr 139(2):353–358. doi:10.3945/jn.108.098681

    PubMed  CAS  Google Scholar 

  29. 29.

    Andrew T, Hart DJ, Snieder H, de Lange M, Spector TD, MacGregor AJ (2001) Are twins and singletons comparable? A study of disease-related and lifestyle characteristics in adult women. Twin Res 4(6):464–477

    PubMed  CAS  Google Scholar 

  30. 30.

    Teucher B, Skinner J, Skidmore PM, Cassidy A, Fairweather-Tait SJ, Hooper L, Roe MA, Foxall R, Oyston SL, Cherkas LF, Perks UC, Spector TD, MacGregor AJ (2007) Dietary patterns and heritability of food choice in a UK female twin cohort. Twin Res Hum Genet 10(5):734–748. doi:10.1375/twin.10.5.734

    PubMed  Article  Google Scholar 

  31. 31.

    Samaras K, Kelly PJ, Chiano MN, Spector TD, Campbell LV (1999) Genetic and environmental influences on total-body and central abdominal fat: the effect of physical activity in female twins. Ann Intern Med 130(11):873–882

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kyle UG, Schutz Y, Dupertuis YM, Pichard C (2003) Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition 19(7–8):597–604

    PubMed  Article  Google Scholar 

  33. 33.

    Welch AA, Luben R, Khaw KT, Bingham SA (2005) The CAFE computer program for nutritional analysis of the EPIC-Norfolk food frequency questionnaire and identification of extreme nutrient values. J Hum Nutr Diet 18(2):99–116. doi:10.1111/j.1365-277X.2005.00593.x

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Agency FS (2002) McCance and Widdowson’s the composition of foods sixth summary edition. Royal Society of Chemistry, Cambridge

    Google Scholar 

  35. 35.

    Otten JJ, Hellwig JP, Meyers LD (2006) DRI, dietary reference intakes: the essential guide to nutrient requirements. National Academies Press, Washington, D.C

  36. 36.

    Rennie KL, Coward A, Jebb SA (2007) Estimating under-reporting of energy intake in dietary surveys using an individualised method. Br J Nutr 97(6):1169–1176. doi:10.1017/S0007114507433086

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Paddon-Jones D, Sheffield-Moore M, Cree MG, Hewlings SJ, Aarsland A, Wolfe RR, Ferrando AA (2006) Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab 91(12):4836–4841. doi:10.1210/jc.2006-0651

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Szulc P, Duboeuf F, Marchand F, Delmas PD (2004) Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS study. Am J Clin Nutr 80(2):496–503

    PubMed  CAS  Google Scholar 

  39. 39.

    Castillo EM, Goodman-Gruen D, Kritz-Silverstein D, Morton DJ, Wingard DL, Barrett-Connor E (2003) Sarcopenia in elderly men and women: the Rancho Bernardo study. Am J Prev Med 25(3):226–231

    PubMed  Article  Google Scholar 

  40. 40.

    Petersen AM, Magkos F, Atherton P, Selby A, Smith K, Rennie MJ, Pedersen BK, Mittendorfer B (2007) Smoking impairs muscle protein synthesis and increases the expression of myostatin and MAFbx in muscle. Am J Physiol Endocrinol Metab 293(3):E843–848. doi:10.1152/ajpendo.00301.2007

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Obisesan TO, Aliyu MH, Bond V, Adams RG, Akomolafe A, Rotimi CN (2005) Ethnic and age-related fat free mass loss in older Americans: the Third National Health and Nutrition Examination Survey (NHANES III). BMC Publ Health 5:41. doi:10.1186/1471-2458-5-41

    Article  Google Scholar 

  42. 42.

    Li C, Ford ES, Zhao G, Balluz LS, Giles WH (2009) Estimates of body composition with dual-energy X-ray absorptiometry in adults. Am J Clin Nutr 90(6):1457–1465. doi:10.3945/ajcn.2009.28141

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Dey DK, Bosaeus I, Lissner L, Steen B (2009) Changes in body composition and its relation to muscle strength in 75-year-old men and women: a 5-year prospective follow-up study of the NORA cohort in Goteborg, Sweden. Nutrition 25(6):613–619. doi:10.1016/j.nut.2008.11.023

    PubMed  Article  Google Scholar 

  44. 44.

    Kyle UG, Melzer K, Kayser B, Picard-Kossovsky M, Gremion G, Pichard C (2006) Eight-year longitudinal changes in body composition in healthy Swiss adults. J Am Coll Nutr 25(6):493–501

    PubMed  Google Scholar 

  45. 45.

    Papadoyannakis NJ, Stefanidis CJ, McGeown M (1984) The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure. Am J Clin Nutr 40(3):623–627

    PubMed  CAS  Google Scholar 

  46. 46.

    de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM (2009) Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 20(9):2075–2084. doi:10.1681/ASN.2008111205

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Wellcome Trust, The Chronic Diseases Research Foundation and UEA research funding for dietary assessment.

Conflicts of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Welch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Welch, A.A., MacGregor, A.J., Skinner, J. et al. A higher alkaline dietary load is associated with greater indexes of skeletal muscle mass in women. Osteoporos Int 24, 1899–1908 (2013). https://doi.org/10.1007/s00198-012-2203-7

Download citation

Keywords

  • Diet acid–base Load
  • Fat-free mass
  • Muscle
  • Potential renal acid load (PRAL)
  • Sarcopenia