Skip to main content

Mediterranean diet and incidence of hip fractures in a European cohort

Abstract

Summary

Prevention of hip fractures is of critical public health importance. In a cohort of adults from eight European countries, evidence was found that increased adherence to Mediterranean diet, measured by a 10-unit dietary score, is associated with reduced hip fracture incidence, particularly among men.

Introduction

Evidence on the role of dietary patterns on hip fracture incidence is scarce. We explored the association of adherence to Mediterranean diet (MD) with hip fracture incidence in a cohort from eight European countries.

Methods

A total of 188,795 eligible participants (48,814 men and 139,981 women) in the European Prospective Investigation into Cancer and nutrition study with mean age 48.6 years (±10.8) were followed for a median of 9 years, and 802 incident hip fractures were recorded. Diet was assessed at baseline through validated dietary instruments. Adherence to MD was evaluated by a MD score (MDs), on a 10-point scale, in which monounsaturated were substituted with unsaturated lipids. Association with hip fracture incidence was assessed through Cox regression with adjustment for potential confounders.

Results

Increased adherence to MD was associated with a 7 % decrease in hip fracture incidence [hazard ratio (HR) per 1-unit increase in the MDs 0.93; 95 % confidence interval (95 % CI) = 0.89–0.98]. This association was more evident among men and somewhat stronger among older individuals. Using increments close to one standard deviation of daily intake, in the overall sample, high vegetable (HR = 0.86; 95 % CI = 0.79–0.94) and high fruit (HR = 0.89; 95 % CI = 0.82–0.97) intake was associated with decreased hip fracture incidence, whereas high meat intake (HR = 1.18; 95 % CI = 1.06–1.31) with increased incidence. Excessive ethanol consumption (HR high versus moderate = 1.74; 95 % CI = 1.32–2.31) was also a risk factor.

Conclusions

In a prospective study of adults, increased adherence to MD appears to protect against hip fracture occurrence, particularly among men.

This is a preview of subscription content, access via your institution.

References

  1. Cooper C, Cole ZA, Holroyd CR, Earl SC, Harvey NC, Dennison EM, Melton LJ, Cummings SR, Kanis JA, IOF CSA Working Group on Fracture Epidemiology (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22(5):1277–1288

    PubMed  Article  CAS  Google Scholar 

  2. Cooper C, Campion G, Melton LJ III (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289

    PubMed  Article  CAS  Google Scholar 

  3. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733

    PubMed  Article  CAS  Google Scholar 

  4. Richmond J, Aharonoff GB, Zucherman JD, Koval KJ (2003) Mortality risk after hip fracture. J Orthop Trauma 17:53–56

    PubMed  Article  Google Scholar 

  5. Becker DJ, Kilgore ML, Morrisey MA (2010) The societal burden of osteoporosis. Curr Rheumatol Rep 12(3):186–191

    PubMed  Article  Google Scholar 

  6. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    PubMed  Article  Google Scholar 

  7. Johnell O, Hertzman P (2006) What evidence is there for the prevention and screening of osteoporosis? WHO Regional Office for Europe, Copenhagen, http://www.euro.who.int/document/e88668.pdf, accessed 18 May 2006

    Google Scholar 

  8. Prentice A (2004) Diet, nutrition and the prevention of osteoporosis. Public Health Nutr 7:227–243

    PubMed  Article  CAS  Google Scholar 

  9. Cashman KD (2007) Diet, nutrition, and bone health. J Nutr 137(11Suppl):2507S–2512S

    PubMed  CAS  Google Scholar 

  10. Tucker KL (2009) Osteoporosis prevention and nutrition. Curr Osteoporos Rep 7(4):111–117

    PubMed  Article  Google Scholar 

  11. Hu FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13:3–9

    PubMed  Article  CAS  Google Scholar 

  12. Trichopoulou A, Lagiou P (1997) Healthy traditional Mediterranean diet: an expression of culture, history and lifestyle. Nutr Rev 55:383–389

    PubMed  Article  CAS  Google Scholar 

  13. Sofi F, Abbate R, Gensini GF, Casini A (2010) Accruing evidence on benefits of adherence to Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr 92(5):1189–1196

    PubMed  Article  CAS  Google Scholar 

  14. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP (1999) Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 69(4):727–736

    PubMed  CAS  Google Scholar 

  15. Trichopoulou A, Georgiou E, Bassiakos Y, Lipworth L, Lagiou P, Proukakis C, Trichopoulos D (1997) Energy intake and monounsaturated fat in relation to bone mineral density among women and men in Greece. Prev Med 26:395

    PubMed  Article  CAS  Google Scholar 

  16. Macdonald H, New S, Golden M, Cambell M, Reid D (2004) Nutritional associations with bone loss during the menopausal transition: evidence of beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of detrimental effect of fatty acids. Am J Clin Nutr 79:155–165

    PubMed  CAS  Google Scholar 

  17. Feskanich D, Willett WC, Colditz GA (2003) Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am J Clin Nutr 77:504–511

    PubMed  CAS  Google Scholar 

  18. Benetou V, Orfanos P, Zylis D, Sieri S, Contiero P, Tumino R, Giurdanella MC, Peeters PH, Linseisen J, Nieters A, Boeing H, Weikert C, Pettersson U, Johansson I, Bueno-de-Mesquita HB, Dorronsoro M, Boffetta P, Trichopoulou A (2011) Diet and hip fractures among elderly Europeans in the EPIC cohort. Eur J Clin Nutr 65(1):132–139

    PubMed  Article  CAS  Google Scholar 

  19. Kushi LH, Lenart EB, Willett WC (1995) Health implications of Mediterranean diets in light of contemporary knowledge. 1. Plant foods and dairy products. Am J Clin Nutr 61(6 Suppl):1407S–1415S

    PubMed  CAS  Google Scholar 

  20. Johnell O, Gullberg B, Allander E, Kanis JA (1992) The apparent incidence of hip fracture in Europe: a study of national register sources. MEDOS Study Group. Osteoporos Int 2(6):298–302

    PubMed  Article  CAS  Google Scholar 

  21. Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M et al (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5:1113–1124

    PubMed  Article  CAS  Google Scholar 

  22. Margetts BM, Pietinen P (1997) European prospective investigation into cancer and nutrition: validity studies on dietary assessment methods. Int J Epidemiol 26(Suppl 1):S1–S5

    PubMed  Article  Google Scholar 

  23. Slimani N, Kaaks R, Ferrari P, Casagrande C, Clavel-Chapelon F, Lotze G et al (2002) European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: rationale, design and population characteristics. Public Health Nutr 5(6B):1125–1145

    PubMed  Article  CAS  Google Scholar 

  24. Slimani N, Deharveng G, Unwin I, Southgate DA, Vignat J, Skeie G et al (2007) The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr 61:1037–1056

    PubMed  Article  CAS  Google Scholar 

  25. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348:2599–2608

    PubMed  Article  Google Scholar 

  26. Trichopoulou A, Orfanos P, Norat T, Bueno-de-Mesquita B, Ocké MC, Peeters PH et al (2005) Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ 330:991–997

    PubMed  Article  Google Scholar 

  27. Wareham NJ, Jakes RW, Rennie KL, Schuit J, Mitchell J, Hennings S, Day NE (2003) Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 6(4):407–413

    PubMed  Article  Google Scholar 

  28. Haftenberger M, Lahmann PH, Panico S, Gonzalez CA, Seidell JC, Boeing H et al (2002) Overweight, obesity and fat distribution in 50- to 64-year-old participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 5(6b):1147–1162

    PubMed  Article  CAS  Google Scholar 

  29. Kaaks R, Riboli E (1997) Validation and calibration of dietary intake measurements in the EPIC project: methodological considerations. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26(Suppl 1):S15–S25

    PubMed  Article  Google Scholar 

  30. Tucker KL, Chen H, Hannan MT, Cupples LA, Wilson PW, Felson D, Kiel DP (2002) Bone mineral density and dietary patterns in older adults: the Framingham osteoporosis study. Am J Clin Nutr 76(1):245–252

    PubMed  CAS  Google Scholar 

  31. Hardcastle AC, Aucott L, Fraser WD, Reid DM, Macdonald HM (2011) Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur J Clin Nutr 65(3):378–385

    PubMed  Article  CAS  Google Scholar 

  32. McNaughton SA, Wattanapenpaiboon N, Wark JD, Nowson CA (2011) An energy-dense, nutrient-poor dietary pattern is inversely associated with bone health in women. J Nutr 141(8):1516–1523

    PubMed  Article  CAS  Google Scholar 

  33. Kontogianni MD, Melistas L, Yannakoulia M, Malagaris I, Panagiotakos DB, Yiannakouris N (2009) Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. Nutrition 25(2):165–171

    PubMed  Article  Google Scholar 

  34. McTiernan A, Wactawski-Wende J, Wu L, Rodabough RJ, Watts NB, Tylavsky F, Freeman R, Hendrix S, Jackson R, Women’s Health Initiative Investigators (2009) Low-fat, increased fruit, vegetable, and grain dietary pattern, fractures, and bone mineral density: the Women’s Health Initiative Dietary Modification Trial. Am J Clin Nutr 89(6):1864–1876

    PubMed  Article  CAS  Google Scholar 

  35. Lin PH, Ginty F, Appel LJ, Aickin M, Bohannon A, Garnero P, Barclay D, Svetkey LP (2003) The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr 133(10):3130–3136

    PubMed  CAS  Google Scholar 

  36. Langsetmo L, Hanley DA, Prior JC, Barr SI, Anastassiades T, Towheed T, Goltzman D, Morin S, Poliquin S, Kreiger N, CaMos Research Group (2011) Dietary patterns and incident low-trauma fractures in postmenopausal women and men aged ≥50 y: a population-based cohort study. Am J Clin Nutr 93(1):192–199

    PubMed  Article  CAS  Google Scholar 

  37. Schulman RC, Weiss AJ, Mechanick JI (2011) Nutrition, bone, and aging: an integrative physiology approach. Curr Osteoporos Rep 9(4):184–195

    PubMed  Article  Google Scholar 

  38. Hamidi M, Boucher BA, Cheung AM, Beyene J, Shah PS (2011) Fruit and vegetable intake and bone health in women aged 45 years and over: a systematic review. Osteoporos Int 22(6):1681–1693

    PubMed  Article  CAS  Google Scholar 

  39. New SA (2002) Nutrition Society Medal lecture. The role of the skeleton in acid–base homeostasis. Proc Nutr Soc 61:151

    PubMed  Article  CAS  Google Scholar 

  40. Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA (2011) Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill’s epidemiologic criteria for causality. Nutr J 10:41

    PubMed  Article  CAS  Google Scholar 

  41. Tucker KL, Jugdaohsingh R, Powell JJ, Qiao N, Hannan MT, Sripanyakorn S, Cupples LA, Kiel DP (2009) Effects of beer, wine, and liquor intakes on bone mineral density in older men and women. Am J Clin Nutr 89(4):1188–1196

    PubMed  Article  CAS  Google Scholar 

  42. Orchard TS, Cauley JA, Frank GC, Neuhouser ML, Robinson JG, Snetselaar L, Tylavsky F, Wactawski-Wende J, Young AM, Lu B, Jackson RD (2010) Fatty acid consumption and risk of fracture in the Women’s Health Initiative. Am J Clin Nutr 92(6):1452–1460

    PubMed  Article  CAS  Google Scholar 

  43. Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL (2011) Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 93(5):1142–1151

    PubMed  Article  CAS  Google Scholar 

  44. Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G (2003) Dietary n−3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res 18:1206–1216

    PubMed  Article  CAS  Google Scholar 

  45. Virtanen JK, Mozaffarian D, Cauley JA, Mukamal KJ, Robbins J, Siscovick DS (2010) Fish consumption, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study. J Bone Miner Res 25(9):1972–1979

    PubMed  Article  Google Scholar 

  46. Weinsier RL, Krumdieck CL (2000) Dairy foods and bone health: examination of the evidence. Am J Clin Nutr 72:681–689

    PubMed  CAS  Google Scholar 

  47. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, Kanis JA, Orav EJ, Staehelin HB, Kiel DP, Burckhardt P, Henschkowski J, Spiegelman D, Li R, Wong JB, Feskanich D, Willett WC (2011) Milk intake and risk of hip fracture in men and women: a meta-analysis of prospective cohort studies. J Bone Miner Res 26(4):833–839

    PubMed  Article  CAS  Google Scholar 

  48. Chen Z, Kooperberg C, Pettinger MB, Bassford T, Cauley JA, LaCroix AZ, Lewis CE, Kipersztok S, Borne C, Jackson RD (2004) Validity of self-report for fractures among a multi-ethnic cohort of postmenopausal women: results from the Women’ Health Initiative observational study and clinical trials. Menopause 11:264–274

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The EPIC study was funded by “Europe Against Cancer” Programme of the European Commission (SANCO), German Cancer Aid, German Cancer Research Center (DKFZ), German Federal Ministry of Education and Research, Greek Ministry of Health, Hellenic Health Foundation, Stavros Niarchos Foundation, Italian Association for Research on Cancer, Italian National Research Council, Dutch Prevention Funds, LK Research Funds, Dutch ZON (Zorg Onderzoek Nederland), The CIBER en Epidemiología y Salud Pública (CIBERESP), Research Institute Biodonostia, Basque Regional Government, World Cancer Research Fund (WCRF), Cancer Research UK, the Swedish Research Council, Medical Faculty of Umeå University, and the county council of Västerbotten. We also thank Göran Hallmans, Åsa Ågren, Hubert Sjödin, and Magnus Hellström for skillful data processing and for help creating the Swedish fracture database, and participants and staff from the NSHDS cohort study.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Benetou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benetou, V., Orfanos, P., Pettersson-Kymmer, U. et al. Mediterranean diet and incidence of hip fractures in a European cohort. Osteoporos Int 24, 1587–1598 (2013). https://doi.org/10.1007/s00198-012-2187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2187-3

Keywords

  • A priori methods
  • Bone health
  • Diet
  • Dietary patterns
  • Hip fractures
  • Mediterranean diet