Advertisement

Osteoporosis International

, Volume 24, Issue 5, pp 1587–1598 | Cite as

Mediterranean diet and incidence of hip fractures in a European cohort

  • V. BenetouEmail author
  • P. Orfanos
  • U. Pettersson-Kymmer
  • U. Bergström
  • O. Svensson
  • I. Johansson
  • F. Berrino
  • R. Tumino
  • K. B. Borch
  • E. Lund
  • P. H. M. Peeters
  • V. Grote
  • K. Li
  • J. M. Altzibar
  • T. Key
  • H. Boeing
  • A. von Ruesten
  • T. Norat
  • P. A. Wark
  • E. Riboli
  • A. Trichopoulou
Original Article

Abstract

Summary

Prevention of hip fractures is of critical public health importance. In a cohort of adults from eight European countries, evidence was found that increased adherence to Mediterranean diet, measured by a 10-unit dietary score, is associated with reduced hip fracture incidence, particularly among men.

Introduction

Evidence on the role of dietary patterns on hip fracture incidence is scarce. We explored the association of adherence to Mediterranean diet (MD) with hip fracture incidence in a cohort from eight European countries.

Methods

A total of 188,795 eligible participants (48,814 men and 139,981 women) in the European Prospective Investigation into Cancer and nutrition study with mean age 48.6 years (±10.8) were followed for a median of 9 years, and 802 incident hip fractures were recorded. Diet was assessed at baseline through validated dietary instruments. Adherence to MD was evaluated by a MD score (MDs), on a 10-point scale, in which monounsaturated were substituted with unsaturated lipids. Association with hip fracture incidence was assessed through Cox regression with adjustment for potential confounders.

Results

Increased adherence to MD was associated with a 7 % decrease in hip fracture incidence [hazard ratio (HR) per 1-unit increase in the MDs 0.93; 95 % confidence interval (95 % CI) = 0.89–0.98]. This association was more evident among men and somewhat stronger among older individuals. Using increments close to one standard deviation of daily intake, in the overall sample, high vegetable (HR = 0.86; 95 % CI = 0.79–0.94) and high fruit (HR = 0.89; 95 % CI = 0.82–0.97) intake was associated with decreased hip fracture incidence, whereas high meat intake (HR = 1.18; 95 % CI = 1.06–1.31) with increased incidence. Excessive ethanol consumption (HR high versus moderate = 1.74; 95 % CI = 1.32–2.31) was also a risk factor.

Conclusions

In a prospective study of adults, increased adherence to MD appears to protect against hip fracture occurrence, particularly among men.

Keywords

A priori methods Bone health Diet Dietary patterns Hip fractures Mediterranean diet 

Notes

Acknowledgments

The EPIC study was funded by “Europe Against Cancer” Programme of the European Commission (SANCO), German Cancer Aid, German Cancer Research Center (DKFZ), German Federal Ministry of Education and Research, Greek Ministry of Health, Hellenic Health Foundation, Stavros Niarchos Foundation, Italian Association for Research on Cancer, Italian National Research Council, Dutch Prevention Funds, LK Research Funds, Dutch ZON (Zorg Onderzoek Nederland), The CIBER en Epidemiología y Salud Pública (CIBERESP), Research Institute Biodonostia, Basque Regional Government, World Cancer Research Fund (WCRF), Cancer Research UK, the Swedish Research Council, Medical Faculty of Umeå University, and the county council of Västerbotten. We also thank Göran Hallmans, Åsa Ågren, Hubert Sjödin, and Magnus Hellström for skillful data processing and for help creating the Swedish fracture database, and participants and staff from the NSHDS cohort study.

Conflicts of interest

None

References

  1. 1.
    Cooper C, Cole ZA, Holroyd CR, Earl SC, Harvey NC, Dennison EM, Melton LJ, Cummings SR, Kanis JA, IOF CSA Working Group on Fracture Epidemiology (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22(5):1277–1288PubMedCrossRefGoogle Scholar
  2. 2.
    Cooper C, Campion G, Melton LJ III (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289PubMedCrossRefGoogle Scholar
  3. 3.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733PubMedCrossRefGoogle Scholar
  4. 4.
    Richmond J, Aharonoff GB, Zucherman JD, Koval KJ (2003) Mortality risk after hip fracture. J Orthop Trauma 17:53–56PubMedCrossRefGoogle Scholar
  5. 5.
    Becker DJ, Kilgore ML, Morrisey MA (2010) The societal burden of osteoporosis. Curr Rheumatol Rep 12(3):186–191PubMedCrossRefGoogle Scholar
  6. 6.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767PubMedCrossRefGoogle Scholar
  7. 7.
    Johnell O, Hertzman P (2006) What evidence is there for the prevention and screening of osteoporosis? WHO Regional Office for Europe, Copenhagen, http://www.euro.who.int/document/e88668.pdf, accessed 18 May 2006Google Scholar
  8. 8.
    Prentice A (2004) Diet, nutrition and the prevention of osteoporosis. Public Health Nutr 7:227–243PubMedCrossRefGoogle Scholar
  9. 9.
    Cashman KD (2007) Diet, nutrition, and bone health. J Nutr 137(11Suppl):2507S–2512SPubMedGoogle Scholar
  10. 10.
    Tucker KL (2009) Osteoporosis prevention and nutrition. Curr Osteoporos Rep 7(4):111–117PubMedCrossRefGoogle Scholar
  11. 11.
    Hu FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13:3–9PubMedCrossRefGoogle Scholar
  12. 12.
    Trichopoulou A, Lagiou P (1997) Healthy traditional Mediterranean diet: an expression of culture, history and lifestyle. Nutr Rev 55:383–389PubMedCrossRefGoogle Scholar
  13. 13.
    Sofi F, Abbate R, Gensini GF, Casini A (2010) Accruing evidence on benefits of adherence to Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr 92(5):1189–1196PubMedCrossRefGoogle Scholar
  14. 14.
    Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP (1999) Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 69(4):727–736PubMedGoogle Scholar
  15. 15.
    Trichopoulou A, Georgiou E, Bassiakos Y, Lipworth L, Lagiou P, Proukakis C, Trichopoulos D (1997) Energy intake and monounsaturated fat in relation to bone mineral density among women and men in Greece. Prev Med 26:395PubMedCrossRefGoogle Scholar
  16. 16.
    Macdonald H, New S, Golden M, Cambell M, Reid D (2004) Nutritional associations with bone loss during the menopausal transition: evidence of beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of detrimental effect of fatty acids. Am J Clin Nutr 79:155–165PubMedGoogle Scholar
  17. 17.
    Feskanich D, Willett WC, Colditz GA (2003) Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am J Clin Nutr 77:504–511PubMedGoogle Scholar
  18. 18.
    Benetou V, Orfanos P, Zylis D, Sieri S, Contiero P, Tumino R, Giurdanella MC, Peeters PH, Linseisen J, Nieters A, Boeing H, Weikert C, Pettersson U, Johansson I, Bueno-de-Mesquita HB, Dorronsoro M, Boffetta P, Trichopoulou A (2011) Diet and hip fractures among elderly Europeans in the EPIC cohort. Eur J Clin Nutr 65(1):132–139PubMedCrossRefGoogle Scholar
  19. 19.
    Kushi LH, Lenart EB, Willett WC (1995) Health implications of Mediterranean diets in light of contemporary knowledge. 1. Plant foods and dairy products. Am J Clin Nutr 61(6 Suppl):1407S–1415SPubMedGoogle Scholar
  20. 20.
    Johnell O, Gullberg B, Allander E, Kanis JA (1992) The apparent incidence of hip fracture in Europe: a study of national register sources. MEDOS Study Group. Osteoporos Int 2(6):298–302PubMedCrossRefGoogle Scholar
  21. 21.
    Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M et al (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5:1113–1124PubMedCrossRefGoogle Scholar
  22. 22.
    Margetts BM, Pietinen P (1997) European prospective investigation into cancer and nutrition: validity studies on dietary assessment methods. Int J Epidemiol 26(Suppl 1):S1–S5PubMedCrossRefGoogle Scholar
  23. 23.
    Slimani N, Kaaks R, Ferrari P, Casagrande C, Clavel-Chapelon F, Lotze G et al (2002) European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: rationale, design and population characteristics. Public Health Nutr 5(6B):1125–1145PubMedCrossRefGoogle Scholar
  24. 24.
    Slimani N, Deharveng G, Unwin I, Southgate DA, Vignat J, Skeie G et al (2007) The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr 61:1037–1056PubMedCrossRefGoogle Scholar
  25. 25.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348:2599–2608PubMedCrossRefGoogle Scholar
  26. 26.
    Trichopoulou A, Orfanos P, Norat T, Bueno-de-Mesquita B, Ocké MC, Peeters PH et al (2005) Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ 330:991–997PubMedCrossRefGoogle Scholar
  27. 27.
    Wareham NJ, Jakes RW, Rennie KL, Schuit J, Mitchell J, Hennings S, Day NE (2003) Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 6(4):407–413PubMedCrossRefGoogle Scholar
  28. 28.
    Haftenberger M, Lahmann PH, Panico S, Gonzalez CA, Seidell JC, Boeing H et al (2002) Overweight, obesity and fat distribution in 50- to 64-year-old participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 5(6b):1147–1162PubMedCrossRefGoogle Scholar
  29. 29.
    Kaaks R, Riboli E (1997) Validation and calibration of dietary intake measurements in the EPIC project: methodological considerations. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26(Suppl 1):S15–S25PubMedCrossRefGoogle Scholar
  30. 30.
    Tucker KL, Chen H, Hannan MT, Cupples LA, Wilson PW, Felson D, Kiel DP (2002) Bone mineral density and dietary patterns in older adults: the Framingham osteoporosis study. Am J Clin Nutr 76(1):245–252PubMedGoogle Scholar
  31. 31.
    Hardcastle AC, Aucott L, Fraser WD, Reid DM, Macdonald HM (2011) Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur J Clin Nutr 65(3):378–385PubMedCrossRefGoogle Scholar
  32. 32.
    McNaughton SA, Wattanapenpaiboon N, Wark JD, Nowson CA (2011) An energy-dense, nutrient-poor dietary pattern is inversely associated with bone health in women. J Nutr 141(8):1516–1523PubMedCrossRefGoogle Scholar
  33. 33.
    Kontogianni MD, Melistas L, Yannakoulia M, Malagaris I, Panagiotakos DB, Yiannakouris N (2009) Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. Nutrition 25(2):165–171PubMedCrossRefGoogle Scholar
  34. 34.
    McTiernan A, Wactawski-Wende J, Wu L, Rodabough RJ, Watts NB, Tylavsky F, Freeman R, Hendrix S, Jackson R, Women’s Health Initiative Investigators (2009) Low-fat, increased fruit, vegetable, and grain dietary pattern, fractures, and bone mineral density: the Women’s Health Initiative Dietary Modification Trial. Am J Clin Nutr 89(6):1864–1876PubMedCrossRefGoogle Scholar
  35. 35.
    Lin PH, Ginty F, Appel LJ, Aickin M, Bohannon A, Garnero P, Barclay D, Svetkey LP (2003) The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr 133(10):3130–3136PubMedGoogle Scholar
  36. 36.
    Langsetmo L, Hanley DA, Prior JC, Barr SI, Anastassiades T, Towheed T, Goltzman D, Morin S, Poliquin S, Kreiger N, CaMos Research Group (2011) Dietary patterns and incident low-trauma fractures in postmenopausal women and men aged ≥50 y: a population-based cohort study. Am J Clin Nutr 93(1):192–199PubMedCrossRefGoogle Scholar
  37. 37.
    Schulman RC, Weiss AJ, Mechanick JI (2011) Nutrition, bone, and aging: an integrative physiology approach. Curr Osteoporos Rep 9(4):184–195PubMedCrossRefGoogle Scholar
  38. 38.
    Hamidi M, Boucher BA, Cheung AM, Beyene J, Shah PS (2011) Fruit and vegetable intake and bone health in women aged 45 years and over: a systematic review. Osteoporos Int 22(6):1681–1693PubMedCrossRefGoogle Scholar
  39. 39.
    New SA (2002) Nutrition Society Medal lecture. The role of the skeleton in acid–base homeostasis. Proc Nutr Soc 61:151PubMedCrossRefGoogle Scholar
  40. 40.
    Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA (2011) Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill’s epidemiologic criteria for causality. Nutr J 10:41PubMedCrossRefGoogle Scholar
  41. 41.
    Tucker KL, Jugdaohsingh R, Powell JJ, Qiao N, Hannan MT, Sripanyakorn S, Cupples LA, Kiel DP (2009) Effects of beer, wine, and liquor intakes on bone mineral density in older men and women. Am J Clin Nutr 89(4):1188–1196PubMedCrossRefGoogle Scholar
  42. 42.
    Orchard TS, Cauley JA, Frank GC, Neuhouser ML, Robinson JG, Snetselaar L, Tylavsky F, Wactawski-Wende J, Young AM, Lu B, Jackson RD (2010) Fatty acid consumption and risk of fracture in the Women’s Health Initiative. Am J Clin Nutr 92(6):1452–1460PubMedCrossRefGoogle Scholar
  43. 43.
    Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL (2011) Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 93(5):1142–1151PubMedCrossRefGoogle Scholar
  44. 44.
    Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G (2003) Dietary n−3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res 18:1206–1216PubMedCrossRefGoogle Scholar
  45. 45.
    Virtanen JK, Mozaffarian D, Cauley JA, Mukamal KJ, Robbins J, Siscovick DS (2010) Fish consumption, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study. J Bone Miner Res 25(9):1972–1979PubMedCrossRefGoogle Scholar
  46. 46.
    Weinsier RL, Krumdieck CL (2000) Dairy foods and bone health: examination of the evidence. Am J Clin Nutr 72:681–689PubMedGoogle Scholar
  47. 47.
    Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, Kanis JA, Orav EJ, Staehelin HB, Kiel DP, Burckhardt P, Henschkowski J, Spiegelman D, Li R, Wong JB, Feskanich D, Willett WC (2011) Milk intake and risk of hip fracture in men and women: a meta-analysis of prospective cohort studies. J Bone Miner Res 26(4):833–839PubMedCrossRefGoogle Scholar
  48. 48.
    Chen Z, Kooperberg C, Pettinger MB, Bassford T, Cauley JA, LaCroix AZ, Lewis CE, Kipersztok S, Borne C, Jackson RD (2004) Validity of self-report for fractures among a multi-ethnic cohort of postmenopausal women: results from the Women’ Health Initiative observational study and clinical trials. Menopause 11:264–274PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  • V. Benetou
    • 1
    • 16
    Email author
  • P. Orfanos
    • 1
  • U. Pettersson-Kymmer
    • 2
  • U. Bergström
    • 3
  • O. Svensson
    • 3
  • I. Johansson
    • 4
  • F. Berrino
    • 5
  • R. Tumino
    • 6
  • K. B. Borch
    • 7
  • E. Lund
    • 7
  • P. H. M. Peeters
    • 8
    • 9
  • V. Grote
    • 10
  • K. Li
    • 10
  • J. M. Altzibar
    • 11
  • T. Key
    • 12
  • H. Boeing
    • 13
  • A. von Ruesten
    • 13
  • T. Norat
    • 9
  • P. A. Wark
    • 9
  • E. Riboli
    • 14
  • A. Trichopoulou
    • 1
    • 15
  1. 1.WHO Collaborating Center for Food and Nutrition Policies, Department of Hygiene, Epidemiology and Medical StatisticsUniversity of Athens Medical SchoolAthensGreece
  2. 2.Department of Pharmacology and Clinical NeurosciencesUmeå UniversityUmeåSweden
  3. 3.Department of Surgical and Perioperative SciencesUmeå UniversityUmeåSweden
  4. 4.Department of OdontologyUmeå UniversityUmeåSweden
  5. 5.Department of Preventive and Predictive Medicine, Epidemiology UnitFondazione IRCCS Instituto Nazionale TumoriMilanItaly
  6. 6.Cancer Registry and Histopathology Unit“Civile M.P.Arezzo” HospitalRagusaItaly
  7. 7.Department of Community MedicineUniversity of TromsøTromsøNorway
  8. 8.Julius CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
  9. 9.Department of Epidemiology and Biostatistics, School of Public Health, Faculty of MedicineImperial College, St. Mary’s CampusLondonUK
  10. 10.Division of Cancer Epidemiology c020German Cancer Research Center (DKFZ)HeidelbergGermany
  11. 11.Public Health Division of Gipuzkoa, Health Department of Basque Country, BIODonostia Research InstituteCIBER Epidemiología y Salud Pública CIBERESPSan SebastianSpain
  12. 12.Cancer Epidemiology UnitUniversity of OxfordOxfordUK
  13. 13.Department of EpidemiologyGerman Institute of Human Nutrition Potsdam-RehbrueckeNuthetalGermany
  14. 14.School of Public HealthImperial CollegeLondonUK
  15. 15.Hellenic Health FoundationAthensGreece
  16. 16.Department of Hygiene, Epidemiology and Medical StatisticsUniversity of Athens Medical SchoolAthensGreece

Personalised recommendations