Skip to main content

Advertisement

Log in

Association of bone turnover markers with mortality in men referred to coronary angiography

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We aimed to examine the association of fatal events with osteocalcin (OC) and beta-crosslaps (β-CTX) levels in men. We observed a U-shaped association of OC and β-CTX levels with fatal events in a large cohort of men at high cardiovascular risk.

Introduction

Accumulating evidence suggests an association of low OC levels with metabolic disturbances. Whether OC levels are related to fatal events is, however, less clear. Further, high β-CTX levels are linked to increased mortality. We aimed to examine the association of fatal events with both OC and β-CTX in men.

Methods

We measured OC and β-CTX in 2,271 men referred to coronary angiography (1997–2000).

Results

We observed a U-shaped association of OC and β-CTX with fatal events. Crude hazard ratios (HRs) for all-cause and non-cardiovascular mortality in the highest OC quintile were 1.38 (1.04–1.83) and 1.47 (0.89–2.40), respectively, and 2.11 (1.61–2.75) and 2.06 (1.29–3.29) for men in the lowest compared to the third OC quintile. In multivariate-adjusted models, HRs for all-cause, and non-cardiovascular mortality in the lowest OC quintile were 1.63 (1.23–2.16) and 1.79 (1.10–2.92), respectively, compared to the third OC quintile, whereas the association of high OC with mortality lost its significance. Crude and multivariate-adjusted HRs for cardiovascular mortality in the lowest OC quintile compared to the third OC quintile were 2.08 (1.49–2.90) and 1.74 (1.24–2.46), respectively. Moreover, high as well as low β-CTX levels were independently associated with all-cause (quintile 1 vs. quintile 3: HR 1.42 (1.05–1.92); quintile 5 vs. quintile 3: HR 1.79 (1.31–2.45)) and cardiovascular mortality (quintile 1 vs. quintile 3: HR 1.55 (1.05–2.28); quintile 5 vs. quintile 3: HR 1.85 (1.23–2.77)).

Conclusions

We observed a U-shaped association of OC and β-CTX with fatal events in a large cohort of men at high cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sambrook PN, Chen CJ, March L, Cameron ID, Cumming RG, Lord SR, Simpson JM, Seibel MJ (2006) High bone turnover is an independent predictor of mortality in the frail elderly. J Bone Miner Res 21(4):549–555

    Article  PubMed  Google Scholar 

  2. Cooper C, Atkinson EJ, Jacobsen SJ, O'Fallon WM, Melton LJ 3rd (1993) Population-based study of survival after osteoporotic fractures. Am J Epidemiol 137(9):1001–1005

    PubMed  CAS  Google Scholar 

  3. Trivedi DP, Khaw KT (2001) Bone mineral density at the hip predicts mortality in elderly men. Osteoporos Int 12(4):259–265

    Article  PubMed  CAS  Google Scholar 

  4. Reyes-Garcia R, Rozas-Moreno P, Jimenez-Moleon JJ, Villoslada MJ, Garcia-Salcedo JA, Santana-Morales S, Muñoz-Torres M (2011) Relationship between serum levels of osteocalcin and atherosclerotic disease in type 2 diabetes. Diabetes Metab in press

  5. Vogt MT, San Valentin R, Forrest KY, Nevitt MC, Cauley JA (1997) Bone mineral density and aortic calcification: the Study of Osteoporotic Fractures. J Am Geriatr Soc 45(2):140–145

    PubMed  CAS  Google Scholar 

  6. Watson KE, Boström K, Ravindranath R, Lam T, Norton B, Demer LL (1994) TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest 93(5):2106–2113

    Article  PubMed  CAS  Google Scholar 

  7. Dhore CR, Cleutjens JP, Lutgens E, Cleutjens KB, Geusens PP, Kitslaar PJ, Tordoir JH, Spronk HM, Vermeer C, Daemen MJ (2001) Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 21(12):1998–2003

    Article  PubMed  CAS  Google Scholar 

  8. Im JA, Yu BP, Jeon JY, Kim SH (2008) Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chem Acta 396(1–2):66–69

    Article  CAS  Google Scholar 

  9. Pittas AG, Harris SS, Eliades M, Stark P, Dawson-Hughes B (2009) Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 94(3):827–832

    Article  PubMed  CAS  Google Scholar 

  10. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, Sugimoto T (2009) Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 94(1):45–49

    Article  PubMed  CAS  Google Scholar 

  11. Yeap BB, Chubb SA, Flicker L, McCaul KA, Ebeling PR, Hankey GJ, Beilby JP, Norman PE (2012) Associations of total osteocalcin with all-cause and cardiovascular mortality in older men. The Health In Men Study. Osteoporos Int 23(2):599–606

    Article  PubMed  CAS  Google Scholar 

  12. Peichl P, Griesmacherb A, Marteau R, Hejc S, Kumpan W, Müller MM, Bröll H (2001) Serum crosslaps in comparison to serum osteocalcin and urinary bone resorption markers. Clin Biochem 34(2):131–139

    Article  PubMed  CAS  Google Scholar 

  13. Winkelmann BR, März W, Boehm BO, Zotz R, Hager J, Hellstern P, Senges J, LURIC Study Group (LUdwigshafen RIsk and Cardiovascular Health) (2001) Rationale and design of the LURIC study—a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics 2(1 Suppl 1):S1–S73

    Article  PubMed  CAS  Google Scholar 

  14. National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) (2002) National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Circulation 106(25):3143–3421

    Google Scholar 

  15. Hamann C, Kirschner S, Günther KP, Hofbauer LC (2012) Bone, sweet bone-osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol 8(5):297–305

    Article  PubMed  CAS  Google Scholar 

  16. Hagström E, Hellman P, Larsson TE, Ingelsson E, Berglund L, Sundström J, Melhus H, Held C, Lind L, Michaëlsson K, Arnlöv J (2009) Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation 119(21):2765–2771

    Article  PubMed  Google Scholar 

  17. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469

    Article  PubMed  CAS  Google Scholar 

  18. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, Hermo L, Suarez S, Roth BL, Ducy P, Karsenty G (2011) Endocrine regulation of male fertility by the skeleton. Cell 144(5):796–809

    Article  PubMed  CAS  Google Scholar 

  19. Kirmani S, Atkinson EJ, Melton LJ 3rd, Riggs BL, Amin S, Khosla S (2011) Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res 26(9):2212–2216

    Article  PubMed  CAS  Google Scholar 

  20. Wehr E, Pilz S, Boehm BO, März W, Grammer TB, Obermayer-Pietsch B (2010) Sex steroids and mortality in men referred for coronary angiography. Clin Endocrinol 73(5):613–621

    Article  CAS  Google Scholar 

  21. Wehr E, Pilz S, Boehm BO, März W, Grammer T, Obermayer-Pietsch B (2011) Low free testosterone is associated with heart failure mortality in older men referred for coronary angiography. Eur J Heart Fail 13(5):482–488

    Article  PubMed  CAS  Google Scholar 

  22. Pal SN, Rush C, Parr A, Van Campenhout A, Golledge J (2010) Osteocalcin positive mononuclear cells are associated with the severity of aortic calcification. Atherosclerosis 210(1):88–93

    Article  PubMed  CAS  Google Scholar 

  23. Montalcini T, Emanuele V, Ceravolo R, Gorgone G, Sesti G, Perticone F, Pujia A (2004) Relation of low bone mineral density and carotid atherosclerosis in postmenopausal women. Am J Cardiol 94(2):266–269

    Article  PubMed  Google Scholar 

  24. Pennisi P, Signorelli SS, Riccobene S, Celotta G, Di Pino L, La Malfa T, Fiore CE (2004) Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporos Int 15(5):389–395

    Article  PubMed  CAS  Google Scholar 

  25. Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA (2005) Bone resorption and osteoporotic fractures in elderly men: the dubbo osteoporosis epidemiology study. J Bone Miner Res 20(4):579–587

    Article  PubMed  Google Scholar 

  26. Szulc P, Garnero P, Claustrat B, Marchand F, Duboeuf F, Delmas PD (2002) Increased bone resorption in moderate smokers with low body weight: the Minos study. J Clin Endocrinol Metab 87(2):666–674

    Article  PubMed  CAS  Google Scholar 

  27. Szulc P, Samelson EJ, Kiel DP, Delmas PD (2009) Increased bone resorption is associated with increased risk of cardiovascular events in men: the MINOS study. J Bone Miner Res 24(12):2023–2031

    Article  PubMed  CAS  Google Scholar 

  28. Sambrook PN, Chen JS, March LM, Cameron ID, Cumming RG, Lord SR, Schwarz J, Seibel MJ (2004) Serum parathyroid hormone is associated with increased mortality independent of 25-hydroxy vitamin d status, bone mass, and renal function in the frail and very old: a cohort study. J Clin Endocrinol Metab 89(11):5477–5481

    Article  PubMed  CAS  Google Scholar 

  29. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281

    Article  PubMed  CAS  Google Scholar 

  30. Lerchbaum E, Pilz S, Grammer TB, Boehm BO, März W, Obermayer-Pietsch B (2011) High estradiol levels are associated with increased mortality in older men referred to coronary angiography. Exp Clin Endocrinol Diabetes 119(8):490–496

    Article  PubMed  CAS  Google Scholar 

  31. Røysland R, Bonaca MP, Omland T, Sabatine M, Murphy SA, Scirica BM, Bjerre M, Flyvbjerg A, Braunwald E, Morrow DA (2012) Osteoprotegerin and cardiovascular mortality in patients with non-ST elevation acute coronary syndromes. Heart 98(10):786–791

    Article  PubMed  Google Scholar 

  32. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142(2):296–308

    Article  PubMed  CAS  Google Scholar 

  33. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105(13):5266–5270

    Article  PubMed  CAS  Google Scholar 

  34. Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T (2011) Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 22(1):187–194

    Article  PubMed  CAS  Google Scholar 

  35. Shea MK, Gundberg CM, Meigs JB, Dallal GE, Saltzman E, Yoshida M, Jacques PF, Booth SL (2009) Gamma-carboxylation of osteocalcin and insulin resistance in older men and women. Am J Clin Nutr 90(5):1230–1235

    Article  PubMed  CAS  Google Scholar 

  36. Gundberg CM (2009) Vitamin K and bone: past, present, and future. J Bone Miner Res 24(6):980–982

    Article  PubMed  CAS  Google Scholar 

  37. Schafer AL, Sellmeyer DE, Schwartz AV, Rosen CJ, Vittinghoff E, Palermo L, Bilezikian JP, Shoback DM, Black DM (2011) Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1-84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH study). J Clin Endocrinol Metab 96(12):E1982–E1989

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

LURIC has received funding through the 6th Framework Program (integrated project Bloodomics, grant LSHM-CT-2004-503485) and 7th of Framework Program (integrated project Atheroremo, Grant Agreement number 201668) of the European Union. B.O.B. received grants from the DFG GrK 1041 and DFG-SFB 518. Roche Diagnostics Austria provided the reagents for the determination of OC and BTCX free of charge, but did not assume any other role in the conduct of the study.

Conflicts of interest

The authors declare no competing interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lerchbaum.

Additional information

Elisabeth Lerchbaum and Verena Schwetz contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerchbaum, E., Schwetz, V., Pilz, S. et al. Association of bone turnover markers with mortality in men referred to coronary angiography. Osteoporos Int 24, 1321–1332 (2013). https://doi.org/10.1007/s00198-012-2076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2076-9

Keywords

Navigation