Osteoporosis International

, Volume 24, Issue 1, pp 163–177 | Cite as

Cost-effectiveness of bone densitometry among Caucasian women and men without a prior fracture according to age and body weight

  • J. T. Schousboe
  • M. Gourlay
  • H. A. Fink
  • B. C. Taylor
  • E. S. Orwoll
  • E. Barrett-Connor
  • L. J. MeltonIII
  • S. R. Cummings
  • K. E. Ensrud
  • For the Osteoporotic Fractures in Men (MrOS) and Study of Osteoporotic Fractures (SOF) Research Groups
Original Article

Abstract

Summary

We used a microsimulation model to estimate the threshold body weights at which screening bone densitometry is cost-effective. Among women aged 55–65 years and men aged 55–75 years without a prior fracture, body weight can be used to identify those for whom bone densitometry is cost-effective.

Introduction

Bone densitometry may be more cost-effective for those with lower body weight since the prevalence of osteoporosis is higher for those with low body weight. Our purpose was to estimate weight thresholds below which bone densitometry is cost-effective for women and men without a prior clinical fracture at ages 55, 60, 65, 75, and 80 years.

Methods

We used a microsimulation model to estimate the costs and health benefits of bone densitometry and 5 years of fracture prevention therapy for those without prior fracture but with femoral neck osteoporosis (T-score ≤ −2.5) and a 10-year hip fracture risk of ≥3%. Threshold pre-test probabilities of low BMD warranting drug therapy at which bone densitometry is cost-effective were calculated. Corresponding body weight thresholds were estimated using data from the Study of Osteoporotic Fractures (SOF), the Osteoporotic Fractures in Men (MrOS) study, and the National Health and Nutrition Examination Survey (NHANES) for 2005–2006.

Results

Assuming a willingness to pay of $75,000 per quality adjusted life year (QALY) and drug cost of $500/year, body weight thresholds below which bone densitometry is cost-effective for those without a prior fracture were 74, 90, and 100 kg, respectively, for women aged 55, 65, and 80 years; and were 67, 101, and 108 kg, respectively, for men aged 55, 75, and 80 years.

Conclusions

For women aged 55–65 years and men aged 55–75 years without a prior fracture, body weight can be used to select those for whom bone densitometry is cost-effective.

Keywords

Body weight Bone densitometry Cost-effectiveness Osteoporosis screening 

References

  1. 1.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475PubMedCrossRefGoogle Scholar
  2. 2.
    National Osteoporosis Foundation (2008) Clinician's guide to prevention and treatment of osteoporosis. National Osteoporosis Foundation, Washington, DCGoogle Scholar
  3. 3.
    Schousboe JT, Ensrud KE, Nyman JA, Melton LJ 3rd, Kane RL (2005) Universal bone densitometry screening combined with alendronate therapy for those diagnosed with osteoporosis is highly cost-effective for elderly women. J Am Geriatr Soc 53:1697–1704PubMedCrossRefGoogle Scholar
  4. 4.
    Schwenkglenks M, Lippuner K (2007) Simulation-based cost–utility analysis of population screening-based alendronate use in Switzerland. Osteoporos Int 18:1481–1491PubMedCrossRefGoogle Scholar
  5. 5.
    Mobley LR, Hoerger TJ, Wittenborn JS, Galuska DA, Rao JK (2006) Cost-effectiveness of osteoporosis screening and treatment with hormone replacement therapy, raloxifene, or alendronate. Med Decis Making 26:194–206PubMedCrossRefGoogle Scholar
  6. 6.
    Schousboe JT, Taylor BC, Fink HA, Kane RL, Cummings SR, Orwoll ES, Melton LJ 3rd, Bauer DC, Ensrud KE (2007) Cost-effectiveness of bone densitometry followed by treatment of osteoporosis in older men. JAMA 298:629–637PubMedCrossRefGoogle Scholar
  7. 7.
    Nelson HD, Haney EM, Dana T, Bougatsos C, Chou R (2010) Screening for osteoporosis: an update for the U.S. Preventive Services Task Force. Ann Intern Med 153:99–111PubMedGoogle Scholar
  8. 8.
    Rud B, Hilden J, Hyldstrup L, Hrobjartsson A (2007) Performance of the Osteoporosis Self-Assessment Tool in ruling out low bone mineral density in postmenopausal women: a systematic review. Osteoporos Int 18:1177–1187PubMedCrossRefGoogle Scholar
  9. 9.
    Gourlay ML, Powers JM, Lui LY, Ensrud KE (2008) Clinical performance of osteoporosis risk assessment tools in women aged 67 years and older. Osteoporos Int 19:1175–1183PubMedCrossRefGoogle Scholar
  10. 10.
    Cadarette SM, McIsaac WJ, Hawker GA, Jaakkimainen L, Culbert A, Zarifa G, Ola E, Jaglal SB (2004) The validity of decision rules for selecting women with primary osteoporosis for bone mineral density testing. Osteoporos Int 15:361–366PubMedCrossRefGoogle Scholar
  11. 11.
    Schousboe JT, Nyman JA, Kane RL, Ensrud KE (2005) Cost-effectiveness of alendronate therapy for osteopenic postmenopausal women. Ann Intern Med 142:734–741PubMedGoogle Scholar
  12. 12.
    Schousboe JT, Ensrud KE, Nyman JA, Kane RL, Melton LJ 3rd (2005) Potential cost-effective use of spine radiographs to detect vertebral deformity and select osteopenic post-menopausal women for amino-bisphosphonate therapy. Osteoporos Int 16:1883–1893PubMedCrossRefGoogle Scholar
  13. 13.
    Schousboe JT, Ensrud KE, Nyman JA, Kane RL, Melton LJ 3rd (2006) Cost-effectiveness of vertebral fracture assessment to detect prevalent vertebral deformity and select postmenopausal women with a femoral neck T-score > −2.5 for alendronate therapy: a modeling study. J Clin Densitom 9:133–143PubMedCrossRefGoogle Scholar
  14. 14.
    Schousboe JT, Bauer DC, Nyman JA, Kane RL, Melton LJ, Ensrud KE (2007) Potential for bone turnover markers to cost-effectively identify and select post-menopausal osteopenic women at high risk of fracture for bisphosphonate therapy. Osteoporos Int 18:201–210PubMedCrossRefGoogle Scholar
  15. 15.
    Tosteson AN, Melton LJ 3rd, Dawson-Hughes B, Baim S, Favus MJ, Khosla S, Lindsay RL (2008) Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int 19:437–447PubMedCrossRefGoogle Scholar
  16. 16.
    Dawson-Hughes B, Lindsay R, Khosla S, Melton I, LR, Tosteson A, Favus M, Baim S (2008) Clinician's guide to prevention and treatment of osteoporosis. National Osteoporosis Foundation. http://www.nof.org/professionals/NOF_Clinicians_Guide.pdf Accessed May 11, 2008 2008
  17. 17.
    WHO Coordinating Center for Metabolic Bone Diseases (2010) FRAX WHO Fracture Risk Assessment Tool. University of Sheffield, Sheffield, U.K. http://www.sheffield.ac.uk/FRAX/tool.jsp?country=9 Accessed March 1 2011
  18. 18.
    Cummings SR, Black DM, Thompson DE et al (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. Jama 280:2077–2082PubMedCrossRefGoogle Scholar
  19. 19.
    World Health Organization (2001) Macroeconomics and health: investing in health for economic development. World Health Organization, GenevaGoogle Scholar
  20. 20.
    Borgstrom F, Johnell O, Kanis JA, Jonsson B, Rehnberg C (2006) At what hip fracture risk is it cost-effective to treat? International intervention thresholds for the treatment of osteoporosis. Osteoporos Int 17:1459–1471PubMedCrossRefGoogle Scholar
  21. 21.
    Orwoll E, Blank JB, Barrett-Connor E et al (2005) Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study—a large observational study of the determinants of fracture in older men. Contemp Clin Trials 26:569–585PubMedCrossRefGoogle Scholar
  22. 22.
    Blank JB, Cawthon PM, Carrion-Petersen ML, Harper L, Johnson JP, Mitson E, Delay RR (2005) Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials 26:557–568PubMedCrossRefGoogle Scholar
  23. 23.
    Cummings SR, Black DM, Nevitt MC et al (1990) Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group. Jama 263:665–668PubMedCrossRefGoogle Scholar
  24. 24.
    Arias E (2007) United States life tables, 2003. National Vital Statistics Report 54:1–40Google Scholar
  25. 25.
    Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B, Oglesby AK (2003) The components of excess mortality after hip fracture. Bone 32:468–473PubMedCrossRefGoogle Scholar
  26. 26.
    Ettinger B, Black DM, Dawson-Hughes B, Pressman AR, Melton LJ, 3 rd Updated fracture incidence rates for the US version of FRAX. Osteoporos Int 21:25-33Google Scholar
  27. 27.
    Melton LJ 3rd, Crowson CS, O'Fallon WM (1999) Fracture incidence in Olmsted County, Minnesota: comparison of urban with rural rates and changes in urban rates over time. Osteoporos Int 9:29–37PubMedCrossRefGoogle Scholar
  28. 28.
    Melton LJ 3rd (1996) History of the Rochester epidemiology project. Mayo Clin Proc 71:266–274PubMedCrossRefGoogle Scholar
  29. 29.
    Quandt SA, Thompson DE, Schneider DL, Nevitt MC, Black DM (2005) Effect of alendronate on vertebral fracture risk in women with bone mineral density T scores of −1.6 to −2.5 at the femoral neck: the Fracture Intervention Trial. Mayo Clin Proc 80:343–349PubMedCrossRefGoogle Scholar
  30. 30.
    Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC, Nevitt MC, Suryawanshi S, Cummings SR (2000) Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab 85:4118–4124PubMedCrossRefGoogle Scholar
  31. 31.
    McClung MR, Geusens P, Miller PD et al (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip intervention program study group. N Engl J Med 344:333–340PubMedCrossRefGoogle Scholar
  32. 32.
    Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822PubMedCrossRefGoogle Scholar
  33. 33.
    Stevenson M, Jones ML, De Nigris E, Brewer N, Davis S, Oakley J (2005) A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis. Health Technol Assess 9:1–160PubMedGoogle Scholar
  34. 34.
    Sawka AM, Papaioannou A, Adachi JD, Gafni A, Hanley DA, Thabane L (2005) Does alendronate reduce the risk of fracture in men? A meta-analysis incorporating prior knowledge of anti-fracture efficacy in women. BMC Musculoskelet Disord 6:39PubMedCrossRefGoogle Scholar
  35. 35.
    Nielson CM, Marshall LM, Adams AL, Leblanc ES, Cawthon PM, Ensrud K, Stefanick ML, Barrett-Connor E, Orwoll ES (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 26:496–502PubMedCrossRefGoogle Scholar
  36. 36.
    Centers for Medicare and Medicaid Services (2007) Physician fee schedule search 2007. http://www.cms.hhs.gov/PFSlookup/02_PFSSearch.asp Accessed March 4, 2007 2007
  37. 37.
    Centers for Disease Control (2005–2006) National Health and Nutrition Survery. May 21, 2009 edn.Google Scholar
  38. 38.
    (2001) Drug topics 2001 red book. Medical Economics, MontvaleGoogle Scholar
  39. 39.
    Gabriel SE, Tosteson AN, Leibson CL, Crowson CS, Pond GR, Hammond CS, Melton LJ 3rd (2002) Direct medical costs attributable to osteoporotic fractures. Osteoporos Int 13:323–330PubMedCrossRefGoogle Scholar
  40. 40.
    Leibson CL, Tosteson AN, Gabriel SE, Ransom JE, Melton LJ (2002) Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc 50:1644–1650PubMedCrossRefGoogle Scholar
  41. 41.
    Johnell O, Gullberg B, Kanis JA (1997) The hospital burden of vertebral fracture in Europe: a study of national register sources. Osteoporos Int 7:138–144PubMedCrossRefGoogle Scholar
  42. 42.
    Fryback DG, Dunham NC, Palta M et al (2007) US norms for six generic health-related quality-of-life indexes from the National Health Measurement study. Med Care 45:1162–1170PubMedCrossRefGoogle Scholar
  43. 43.
    Peasgood T, Herrmann K, Kanis JA, Brazier JE (2009) An updated systematic review of health state utility values for osteoporosis related conditions. Osteoporos Int 20:853–868PubMedCrossRefGoogle Scholar
  44. 44.
    Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B (2004) Excess mortality after hospitalisation for vertebral fracture. Osteoporos Int 15:108–112PubMedCrossRefGoogle Scholar
  45. 45.
    Tosteson AN, Gabriel SE, Grove MR, Moncur MM, Kneeland TS, Melton LJ 3rd (2001) Impact of hip and vertebral fractures on quality-adjusted life years. Osteoporos Int 12:1042–1049PubMedCrossRefGoogle Scholar
  46. 46.
    Huybrechts KF, Ishak KJ, Caro JJ (2006) Assessment of compliance with osteoporosis treatment and its consequences in a managed care population. Bone 38:922–928PubMedCrossRefGoogle Scholar
  47. 47.
    Patrick AR, Brookhart MA, Losina E, Schousboe JT, Cadarette SM, Mogun H, Solomon DH (2010) The complex relation between bisphosphonate adherence and fracture reduction. J Clin Endocrinol Metab 95:3251–3259PubMedCrossRefGoogle Scholar
  48. 48.
    Rabenda V, Mertens R, Fabri V, Vanoverloop J, Sumkay F, Vannecke C, Deswaef A, Verpooten GA, Reginster JY (2008) Adherence to bisphosphonates therapy and hip fracture risk in osteoporotic women. Osteoporos Int 19:811–818PubMedCrossRefGoogle Scholar
  49. 49.
    U.S. Preventive Services Task Force (2011) Screening for osteoporosis: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 154:356–364Google Scholar
  50. 50.
    Watts NB, Bilezikian JP, Camacho PM et al (2010) American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract 16(Suppl 3):1–37PubMedGoogle Scholar
  51. 51.
    Johansson H, Oden A, Johnell O, Jonsson B, de Laet C, Oglesby A, McCloskey EV, Kayan K, Jalava T, Kanis JA (2004) Optimization of BMD measurements to identify high risk groups for treatment—a test analysis. J Bone Miner Res 19:906–913PubMedCrossRefGoogle Scholar
  52. 52.
    Ensrud KE, Lui LY, Taylor BC, Schousboe JT, Donaldson MG, Fink HA, Cauley JA, Hillier TA, Browner WS, Cummings SR (2009) A comparison of prediction models for fractures in older women: is more better? Arch Intern Med 169:2087–2094PubMedCrossRefGoogle Scholar
  53. 53.
    Nielson C, Srikanth P, Orwoll E (2012) Obesity and fracture in men and women: an epidemiologic perspective. Journal of Bone and Mineral ResearchGoogle Scholar
  54. 54.
    Kanis JA, Johnell O, De Laet C et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382PubMedCrossRefGoogle Scholar
  55. 55.
    Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194PubMedCrossRefGoogle Scholar
  56. 56.
    Nevitt MC, Cummings SR, Stone KL et al (2005) Risk factors for a first-incident radiographic vertebral fracture in women > or = 65 years of age: the study of osteoporotic fractures. J Bone Miner Res 20:131–140PubMedCrossRefGoogle Scholar
  57. 57.
    Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954PubMedCrossRefGoogle Scholar
  58. 58.
    Cummings SR, Cawthon PM, Ensrud KE, Cauley JA, Fink HA, Orwoll ES (2006) BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res 21:1550–1556PubMedCrossRefGoogle Scholar
  59. 59.
    van der Klift M, de Laet CE, McCloskey EV, Johnell O, Kanis JA, Hofman A, Pols HA (2004) Risk factors for incident vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res 19:1172–1180PubMedCrossRefGoogle Scholar
  60. 60.
    Brown LP, Cai TT, Das Gupta A (2001) Interval estimation for a binomial proportion. Stat Sci 16:101–117Google Scholar
  61. 61.
    Orwoll E, Ettinger M, Weiss S et al (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343:604–610PubMedCrossRefGoogle Scholar
  62. 62.
    Ringe JD, Dorst A, Faber H, Ibach K (2004) Alendronate treatment of established primary osteoporosis in men: 3-year results of a prospective, comparative, two-arm study. Rheumatol Int 24:110–113PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  • J. T. Schousboe
    • 1
    • 2
  • M. Gourlay
    • 3
  • H. A. Fink
    • 4
    • 5
  • B. C. Taylor
    • 5
    • 6
    • 7
  • E. S. Orwoll
    • 8
  • E. Barrett-Connor
    • 9
  • L. J. MeltonIII
    • 10
  • S. R. Cummings
    • 11
    • 12
  • K. E. Ensrud
    • 5
    • 6
    • 7
  • For the Osteoporotic Fractures in Men (MrOS) and Study of Osteoporotic Fractures (SOF) Research Groups
  1. 1.Park Nicollet InstituteMinneapolisUSA
  2. 2.Division of Health Policy and ManagementUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Family MedicineUniversity of North CarolinaChapel HillUSA
  4. 4.Geriatric Education and Research CenterDepartment of Veterans Affairs Health Care SystemMinneapolisUSA
  5. 5.Division of Epidemiology and Community HealthUniversity of MinnesotaMinneapolisUSA
  6. 6.Center for Chronic Diseases Outcomes ResearchDepartment of Veterans Affairs Health Care SystemMinneapolisUSA
  7. 7.Department of MedicineUniversity of MinnesotaMinneapolisUSA
  8. 8.Department of MedicineOregon Health Sciences UniversityPortlandUSA
  9. 9.University of California, San DiegoLa JollaUSA
  10. 10.Division of EpidemiologyMayo ClinicRochesterUSA
  11. 11.San Francisco Coordinating CenterSan FranciscoUSA
  12. 12.California Pacific Medical Center Research InstituteSan FranciscoUSA

Personalised recommendations