Advertisement

Osteoporosis International

, Volume 23, Issue 11, pp 2649–2660 | Cite as

The beneficial effect of Radix Dipsaci total saponins on bone metabolism in vitro and in vivo and the possible mechanisms of action

  • Y. B. Niu
  • Y. H. Li
  • X. H. Kong
  • R. Zhang
  • Y. Sun
  • Q. Li
  • C. Li
  • L. Liu
  • J. Wang
  • Q. B. MeiEmail author
Original Article

Abstract

Summary

The purpose of this study is to investigate the anti-osteoporotic effects of Radix Dipsaci total saponins (RTS). We showed that RTS was able to improve bone properties by either an increase of osteoblastic activity or a decrease in osteoclastic activity.

Introduction

Radix Dipsaci has long been used as an anti-osteoporotic drug. The present study investigates the anti-osteoporotic effects of RTS.

Methods

Three-month-old female rats were randomly assigned into a sham-operated group (sham) and five ovariectomy (OVX) subgroups, namely, OVX with vehicle (OVX), OVX with 17β-ethinylestradiol (E2), and OVX with graded doses of RTS (50, 100, or 200 mg/kg/d). RTS and E2 were administered orally, daily from 1 week after OVX treatment for 4 months. Bone mass, turnover, and strength were evaluated by dual-energy X-ray absorptiometry, biochemical markers, and the three-point bending test. The trabecular bone microarchitecture was assessed by microCT. In vitro experiments were performed to determine the potential molecular mechanisms of the anti-osteoporotic effect of RTS.

Results

RTS prevented the loss of bone mass induced by OVX. The preventive effect on bone loss was primarily indicated by decreasing levels of bone turnover markers and confirmed by the changes in urinary calcium and phosphorus excretion. The treatment also enhanced the biomechanical strength of bone and prevented the deterioration of trabecular bone microarchitecture. RTS induced MC3T3-E1 and primary osteoblastic cell maturation and differentiation and increased bone formation by increasing BMP-2 synthesis. In addition, RTS inhibited osteoclastogenesis through an increase in osteoprotegrin and a decrease in NF–kB ligand expression in vitro.

Conclusions

RTS treatment can effectively suppress the loss of bone mass induced by OVX and in vitro evidence suggests this could be through actions on both osteoblasts and osteoclasts.

Keywords

Osteoblast Osteoclast Osteoporosis Ovariectomy Radix Dipsaci total saponins 

Notes

Acknowledgments

We would like to thank Dr. ZhenGuo Liu for providing the support in carrying out this study. This work was supported by the National Natural Science Foundation of China (grant no. 81073037) and the China Postdoctoral Science Foundation funded project (grant no. 2011M501482).

Conflict of interest

All authors declare that there are no conflicts of interest.

Supplementary material

198_2012_1932_MOESM1_ESM.pdf (27 kb)
ESM 1 PDF 27 kb
198_2012_1932_MOESM2_ESM.pdf (192 kb)
ESM 2 PDF 191 kb
198_2012_1932_MOESM3_ESM.pdf (287 kb)
ESM 3 PDF 287 kb

References

  1. 1.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRefGoogle Scholar
  2. 2.
    Kanis JA, Burlet N, Cooper C et al (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 19:399–428PubMedCrossRefGoogle Scholar
  3. 3.
    Reginster JY (2011) Antifracture efficacy of currently available therapies for postmenopausal osteoporosis. Drugs 71:65–78PubMedCrossRefGoogle Scholar
  4. 4.
    Stevenson JC (2005) Justification for the use of HRT in the long-term prevention of osteoporosis. Maturitas 51:113–126PubMedCrossRefGoogle Scholar
  5. 5.
    Foidart JM, Desreux J, Pintiaux A, Gompel A (2007) Hormone therapy and breast cancer risk. Climacteric 2:54–61CrossRefGoogle Scholar
  6. 6.
    Mørch LS, Løkkegaard E, Andreasen AH, Krüger-Kjaer S, Lidegaard O (2009) Hormone therapy and ovarian cancer. JAMA 302:298–305PubMedCrossRefGoogle Scholar
  7. 7.
    Davison S, Davis SR (2003) Hormone replacement therapy: current controversies. Clin Endocrinol (Oxf) 58:249–261CrossRefGoogle Scholar
  8. 8.
    Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355PubMedCrossRefGoogle Scholar
  9. 9.
    Ono Y, Fukaya Y, Imai S, Yamakuni T (2008) Beneficial effects of Ajuga decumbens on osteoporosis and arthritis. Biol Pharm Bull 31:1199–1204PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang R, Liu ZG, Li C et al (2009) Du-Zhong (Eucommia ulmoides Oliv.) cortex extract prevent OVX-induced osteoporosis in rats. Bone 45:553–559PubMedCrossRefGoogle Scholar
  11. 11.
    Iwasawa H, Morita E, Yui S, Yamazaki M (2011) Anti-oxidant effects of kiwi fruit in vitro and in vivo. Biol Pharm Bull 34:128–134PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang Y, Li Q, Wan HY et al (2011) Study of the mechanisms by which Sambucus williamsii HANCE extract exert protective effects against ovariectomy-induced osteoporosis in vivo. Osteoporos Int 22:703–709PubMedCrossRefGoogle Scholar
  13. 13.
    Hung TM, Na M, Thuong PT et al (2006) Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J Ethnopharmacol 108:188–192PubMedCrossRefGoogle Scholar
  14. 14.
    Wong RW, Rabie AB, Hägg EU (2007) The effect of crude extract from Radix Dipsaci on bone in mice. Phytother Res 21:596–598PubMedCrossRefGoogle Scholar
  15. 15.
    Liu ZG, Zhang R, Li C et al (2009) The osteoprotective effect of Radix Dipsaci extract in ovariectomized rats. J Ethnopharmacol 123:74–81PubMedCrossRefGoogle Scholar
  16. 16.
    Tanaka T, Kataoka M, Tsuboi N, Kouno I (2000) New monoterpene glycoside esters and phenolic constituents of Paeoniae radix, and increase of water solubility of proanthocyanidins in the presence of paeoniflorin. Chem Pharm Bull 48:201–207PubMedCrossRefGoogle Scholar
  17. 17.
    Hung TM, Jin W, Thuong PT, Song KS, Seong YH, Bae K (2005) Cytotoxic saponins from the root of Dipsacus asper Wall. Arch Pharm Res 28:1053–1056PubMedCrossRefGoogle Scholar
  18. 18.
    Jung KY, Do JC, Son KH (1993) Triterpene glycosides from the roots of Dipsacus asper. J Nat Prod 56:1912–1916PubMedCrossRefGoogle Scholar
  19. 19.
    Oh SR, Jung KY, Son KH et al (1999) In vitro anticomplementary activity of hederagenin saponins isolated from roots of Dipsacus asper. Arch Pharm Res 22:317–319PubMedCrossRefGoogle Scholar
  20. 20.
    Suh H, Song D, Huh S, Son K, Kim Y (2000) Antinociceptive mechanisms of dipsacus saponin C administered intrathecally in mice. J Ethnopharmacol 71:211–218PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang ZJ, Qian YH, Hu HT, Yang J, Yang GD (2003) The herbal medicine Dipsacus asper Wall extract reduces the cognitive deficits and overexpression of beta-amyloid protein induced by aluminum exposure. Life Sci 73:2443–2454PubMedCrossRefGoogle Scholar
  22. 22.
    Pastoureau P, Chomel A, Bonnet J (1995) Specific evaluation of localized bone mass and bone loss in the rat using dual-energy X-ray absorptiometry subregional analysis. Osteoporos Int 5:143–149PubMedCrossRefGoogle Scholar
  23. 23.
    Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608PubMedCrossRefGoogle Scholar
  24. 24.
    Laib A, Barou O, Vico L, Lafage-Proust MH, Alexandre C, Rügsegger P (2000) 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med Biol Eng Comput 38:326–332PubMedCrossRefGoogle Scholar
  25. 25.
    Tang CH, Yang RS, Liou HC et al (2003) Enhancement of fibronectin synthesis and fibrillogenesis by BMP-4 in cultured rat osteoblast. J Bone Miner Res 18:502–511PubMedCrossRefGoogle Scholar
  26. 26.
    Tang CH, Yang RS, Liou HC, Fu WM (2008) Enhancement of bone morphogenetic protein-2 expression and bone formation by coumarin derivatives via p38 and ERK-dependent pathway in osteoblasts. Eur J Pharmacol 579:40–49PubMedCrossRefGoogle Scholar
  27. 27.
    Yang RS, Lin WL, Chen YZ et al (2005) Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts. Bone 36:276–283PubMedCrossRefGoogle Scholar
  28. 28.
    Li Y, Niu Y, Wu H et al (2009) PC-407, a celecoxib derivative, inhibited the growth of colorectal tumor in vitro and in vivo. Cancer Sci 100:2451–2458PubMedCrossRefGoogle Scholar
  29. 29.
    Ederveen AG, Spanjers CP, Quaijtaal JH, Kloosterboer HJ (2001) Effect of 16 months of treatment with tibolone on bone mass, turnover, and biomechanical quality in mature ovariectomized rats. J Bone Miner Res 16:1674–1681PubMedCrossRefGoogle Scholar
  30. 30.
    Sykaras N, Opperman LA (2003) Bone morphogenetic proteins (BMPs): how do they function and what can they offer the clinician? J Oral Sci 45:57–73PubMedCrossRefGoogle Scholar
  31. 31.
    Peng LH, Ko CH, Siu SW et al (2010) In vitro & in vivo assessment of a herbal formula used topically for bone fracture treatment. J Ethnopharmacol 131:282–289PubMedCrossRefGoogle Scholar
  32. 32.
    Westerlind KC, Wronski TJ, Ritman EL et al (1997) Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci USA 94:4199–4204PubMedCrossRefGoogle Scholar
  33. 33.
    Ferretti JL, Cointry G, Capozza R, Montuori E, Roldán E, Pérez Lloret A (1990) Biomechanical effects of the full range of useful doses of (3-amino-1-hydroxypropylidene)-1, 1-bisphosphonate (APD) on femur diaphyses and cortical bone tissue in rats. Bone Miner 11:111–122PubMedCrossRefGoogle Scholar
  34. 34.
    Ulrich D, van Rietbergen B, Laib A, Rüegsegger P (1999) The ability of threedimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60PubMedCrossRefGoogle Scholar
  35. 35.
    Müller R, Hannan M, Smith SY, Bauss F (2004) Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J Bone Miner Res 19:1787–1796PubMedCrossRefGoogle Scholar
  36. 36.
    Turner RT, Vandersteenhoven JJ, Bell NH (1987) The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2:115–122PubMedCrossRefGoogle Scholar
  37. 37.
    Devareddy L, Khalil DA, Smith BJ et al (2006) Soy moderately improves microstructural properties without affecting bone mass in an ovariectomized rat model of osteoporosis. Bone 38:686–693PubMedCrossRefGoogle Scholar
  38. 38.
    Laib A, Kumer JL, Majumdar S, Lane NE (2001) The temporal changes of trabecular architecture in ovariectomized rats assessed by microCT. Osteoporos Int 12:936–941PubMedCrossRefGoogle Scholar
  39. 39.
    Xiao Y, Haase H, Young WG, Bartold PM (2004) Development and transplantation of a mineralized matrix formed by osteoblasts in vitro for bone regeneration. Cell Transplant 13:15–25PubMedGoogle Scholar
  40. 40.
    Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JM, García-García A (2010) RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:679–686PubMedCrossRefGoogle Scholar
  41. 41.
    Basu S, Michaëlsson K, Olofsson H, Johansson S, Melhus H (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288:275–279PubMedCrossRefGoogle Scholar
  42. 42.
    Maggio D, Barabani M, Pierandrei M et al (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88:1523–1527PubMedCrossRefGoogle Scholar
  43. 43.
    D'Amelio P, Grimaldi A, Di Bella S et al (2008) Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43:92–100PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  • Y. B. Niu
    • 1
  • Y. H. Li
    • 2
  • X. H. Kong
    • 1
  • R. Zhang
    • 3
  • Y. Sun
    • 3
  • Q. Li
    • 3
  • C. Li
    • 3
  • L. Liu
    • 3
  • J. Wang
    • 4
  • Q. B. Mei
    • 1
    • 3
    Email author
  1. 1.School of Life SciencesNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Department of PharmacyZhanjiangPeople’s Republic of China
  3. 3.Department of Pharmacology, School of PharmacyThe Fourth Military Medical UniversityXi’anPeople’s Republic of China
  4. 4.Department of Orthopedics, Xijing HospitalThe Fourth Military Medical UniversityXi’anPeople’s Republic of China

Personalised recommendations