Skip to main content

Advertisement

Log in

Evaluation of bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) in hemodialysis patients

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Hemodialyzed patients have decreased bone strength not completely characterized. We evaluated bone microarchitecture in hemodialysis patients and compared it to that of subjects without renal disease by high-resolution peripheral quantitative computed tomography (HR-pQCT). Hemodialysis patients have a marked decreased in cortical density, thickness, and area with significant reduction in trabecular parameters that correlated with the severity of secondary hyperparathyroidism only in women.

Introduction

Although fracture risk is greatly increased in dialysis patients, the corresponding decreased in bone strength has not been completely characterized.

Methods

We evaluated volumetric bone mineral density (vBMD) and bone microstructure by HR-pQCT at the distal radius and tibia in 50 hemodialyzed (HD) patients (30 females, mean age 53.2 ± 6 years and 20 males, mean age 59.1 ± 11 years) and 50 sex- and age-matched controls.

Results

At the distal radius HD, women showed a 29% reduction in total and trabecular density and trabecular bone volume fraction (p < 0.0001) compared to controls. Trabecular number was reduced by 25% (p < 0.0001), while trabecular separation was increased by 51%. Cortical thickness (−40%, p < 0.0001) and cortical area (−42%, p < 0.0001) were the parameters most reduced, while compact density was the parameter least reduced (−15%, p < 0.0001). Similar findings were found at the tibia. In HD men, HR-pQCT at the distal radius and tibia showed a reduction in volumetric density and microstructure parameters to a lesser extent than in women. In the hemodialyzed group, cortical thickness at the radius was negatively correlated with age both in women and men. At the distal radius and tibia, we found significant negative correlations between Log iPTH and total alkaline phosphatase with cortical vBMD(r = −0.48, p < 0.01; r = −0.69, p < 0.001), thickness (−0.37, p < 0.05; r = −0.60, p < 0.001), and area ((r = −0.43, p = 0.02; r = −0.65, p < 0.001) but only in women.

Conclusion

We conclude that hemodialysis patients have a marked decreased in cortical density, thickness, and area with significant reduction in trabecular parameters that correlated with the severity of secondary hyperparathyroidism only in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gal-Mosovici A, Sprague SM (2007) Osteoporosis and chronic kidney disease. Semin Dial 20:423–430

    Article  Google Scholar 

  2. Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR et al (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58:396–399

    Article  PubMed  CAS  Google Scholar 

  3. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285(6):785–95

    Article  Google Scholar 

  4. Krug R, Burghardt AJ, Majumdar S, Link TM (2010) High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin N Am 48(3):601–621

    Article  PubMed  Google Scholar 

  5. Urena P, Bernard-Poenaru O, Ostertag A et al (2003) Bone mineral density, biochemical markers and skeletal fractures in haemodialysis patients. Nephrol Dial Transplant 18:2325–2331

    Article  PubMed  CAS  Google Scholar 

  6. Gerakis A, Hadjidakis D, Kokkinakis E, Apostolou T, Raptis S, Billis A (2000) Correlation of bone mineral density with the histological findings of renal osteodystrophy in patients on hemodialysis. J Nephrol 13:437–443

    PubMed  CAS  Google Scholar 

  7. Atsumi K, Kushida K, Yamazaki K, Shimizu S, Ohmura A, Inoue T (1999) Risk factors for vertebral fractures in renal osteodystrophy. Am J Kidney Dis 33:287–293

    Article  PubMed  CAS  Google Scholar 

  8. Yamaguchi T, Kanno E, Tsubota J, Shiomi T, Nakai M, Hattori S (1996) Retrospective study on the usefulness of radius and lumbar bone density in the separation of hemodialysis patients with fractures from those without fractures. Bone 19:549–555

    Article  PubMed  CAS  Google Scholar 

  9. Jamal SA, Hayden JA, Beyene J (2007) Low bone mineral density and fractures in long-term hemodialysis patients meta-analysis. Am J Kidney Dis 49(5):674–681

    Article  PubMed  Google Scholar 

  10. Kohlbrenner A, Koller B, Hammerle S et al (2001) In vivo micro tomography. Adv Exp Med Biol 496:213

    Article  PubMed  CAS  Google Scholar 

  11. Muller R, Ruegsegger P (1997) Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud Health Technol Inform 40:61

    PubMed  CAS  Google Scholar 

  12. Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329

    PubMed  CAS  Google Scholar 

  13. Bacchetta J, Boutroy S, Juillard L, Vilayphiou N, Guebre-Egziabher F, Pelletier S, Delmas PD, Fouque D (2009) Bone imaging and chronic kidney disease: will high-resolution peripheral tomography improve bone evaluation and therapeutic management? J Ren Nutr 19(1):44–49

    Article  PubMed  Google Scholar 

  14. Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3DQCT of the human forearm. Technol Health Care 6:329–337

    PubMed  CAS  Google Scholar 

  15. Laib A, Ruegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 24(1):35–39

    Article  PubMed  CAS  Google Scholar 

  16. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174

    Article  PubMed  CAS  Google Scholar 

  17. MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29:1096–1105

    Article  PubMed  Google Scholar 

  18. Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP, Shane E, Guo XE (2010) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. J Bone Miner Res 25(4):746–756

    PubMed  CAS  Google Scholar 

  19. Melton LJ 3rd, van Lenthe GH, Achenbach SJ, Muller R, Bouxsein ML, Amin S, Atkinson EJ, Khosla S (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22:1442–1448

    Article  PubMed  Google Scholar 

  20. Walker MD, McMahon DJ, Udesky J, Liu G, Bilezikian JP (2009) Application of high-resolution skeletal imaging to measurements of volumetric BMD and skeletal microarchitecture in Chinese-American and white women: explanation of a paradox. J Bone Miner Res 24:1953–1959

    Article  PubMed  Google Scholar 

  21. Laib A, Ruegsegger P (1999) Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph 23:69–74

    Article  PubMed  CAS  Google Scholar 

  22. Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng 1:15–23

    Article  Google Scholar 

  23. Silveira F, Monteverde C, Ripero V, Zanchetta MB, Massari F, Zanchetta JR, Bogado C (2011) Osteoporos Int 22(suppl):S254–S255, Poster P367

    Google Scholar 

  24. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515

    Article  PubMed  CAS  Google Scholar 

  25. Russo CR, Taccetti G, Caneva P, Mannarino A, Maranghi P, Ricca M (1998) Volumetric bone density and geometry assessed by peripheral quantitative computed tomography in uremic patients on maintenance hemodialysis. Osteoporos Int 8:443–448

    Article  PubMed  CAS  Google Scholar 

  26. Hasegawa K, Hasegawa Y, Nagano A (2004) Estimation of bone mineral density and architectural parameters of the distal radius in hemodialysis patients using peripheral quantitative computed tomography. J Biomech 37:751–756

    Article  PubMed  Google Scholar 

  27. Negri AL, Barone R, Lombas C, Bogado CE, Zanchetta JR (2006) Evaluation of cortical bone by peripheral quantitative computed tomography in continuous ambulatory peritoneal dialysis patients. Hemodial Int 10:351–355

    Article  PubMed  Google Scholar 

  28. Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21:543–548

    Article  PubMed  Google Scholar 

  29. Bacchetta J, Boutroy S, Vilayphiou N, Juillard L, Guebre-Egziabher F, Rognant N, Sornay-Rendu E, Szulc P, Laville M, Delmas PD, Fouque D, Chapurlat R (2010) Early imparement of trabecular microarchitecture assessed with HR-pQCT in patients with stage II-IV chronic kidney disease. J Bone Miner Res 25(4):849–857

    PubMed  Google Scholar 

  30. Cejka D, Patsch JM, Weber M, Diarra D, Riegersperger M, Kikic Z, Krestan C, Schueller-Weidekamm C, Kainberger F, Haas M (2011) Bone microarchitecture in hemodialysis patients assessed by HR-pQCT. Clin J Am Soc Nephrol 6(9):2264–2271

    Article  PubMed  Google Scholar 

  31. Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11:1356–1363

    Article  PubMed  CAS  Google Scholar 

  32. Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF, Reeve J (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119

    Article  PubMed  CAS  Google Scholar 

  33. Haidekker MA, Andresen R, Werner HJ (1999) Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests. Osteoporos Int 9:433–440

    Article  PubMed  CAS  Google Scholar 

  34. Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, Beck TJ, Reeve J (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16:1318–1328

    Article  PubMed  CAS  Google Scholar 

  35. Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14:345–352

    Article  PubMed  Google Scholar 

  36. Pistoia W, van Rietbergen B, Ruegsegger P (2003) Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius. Bone 33:937–945

    Article  PubMed  CAS  Google Scholar 

  37. London GM, Marchais SJ, Guerin AP, Boutouyrie P, Metvier F, de Vernejoul MC (2008) Association of bone activity, calcium load, artic stiffness, and calcifications in ESRD. J Am Soc Nephrol 19:1827–1835

    Article  PubMed  CAS  Google Scholar 

  38. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Negri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negri, A.L., Del Valle, E.E., Zanchetta, M.B. et al. Evaluation of bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) in hemodialysis patients. Osteoporos Int 23, 2543–2550 (2012). https://doi.org/10.1007/s00198-011-1890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1890-9

Keywords

Navigation