Hydrolyzed collagen improves bone status and prevents bone loss in ovariectomized C3H/HeN mice

Abstract

Summary

This study evaluates the effect of hydrolyzed collagen (HC) on bone health of ovariectomized mice (OVX) at different ages. Twenty-six weeks after the OVX procedure, HC ingestion was still able to improve significantly bone mineral density (BMD) and some femur biomechanical parameters. Moreover, HC ingestion for 1 month before surgery prevented BMD decrease.

Introduction

HC can play an important role in preserving BMD before osteoporosis appears. The aim of this study was to evaluate the effect of HC on bone health of ovariectomized mice at different ages.

Methods

Female C3H mice were either OVX at 3 or 6 months and fed for 6 months (first experiment) or 3 months (second experiment) with diet including 0, 10, or 25 g/kg of HC. In the second experiment, one group received HC 1 month before surgery, and two groups received the supplementation immediately after surgery, one fed ad libitum and the other by gavage. Mice treated with raloxifene were used as a positive control. BMD, femur intrinsic and extrinsic biomechanical properties, and type I collagen C-terminal telopeptide were measured after 12 and 26 weeks. Food intake and spontaneous physical activity were also recorded.

Results

The OVX procedure increased body weight, while food intake decreased, thus suggesting that resting metabolism was decreased. Ingestion of 25 g/kg of HC for 3 or 6 months reduced bone loss significantly in, respectively, 3- and 6-month-old OVX mice. The lowest HC concentration was less efficient. HC ingestion for 3 months is as efficient as raloxifene to protect 3-month-old OVX mice from bone loss. Our results also demonstrated that HC ingestion before surgery prevented the BMD decreases.

Conclusion

This study confirms that dietary collagen reduces bone loss in OVX mice by increasing the diameter of the cortical areas of femurs and can have a preventive effect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Omi N, Ezawa I (1995) The effect of ovariectomy on bone metabolism in rats. Bone 17:163S–168S

    PubMed  CAS  Google Scholar 

  2. 2.

    Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14:S13–S18

    PubMed  Article  Google Scholar 

  3. 3.

    Burr DB (2002) The contribution of the organic matrix to bone's material properties. Bone 3:8–11

    Article  Google Scholar 

  4. 4.

    Currey JD (2001) Bone strength: what are we trying to measure? Calcif Tissue Int 68:205–210

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446

    PubMed  Article  Google Scholar 

  7. 7.

    Peters BS, Martini LA (2010) Nutritional aspects of the prevention and treatment of osteoporosis. Arq Bras Endocrinol Metabol 54:179–185

    PubMed  Article  Google Scholar 

  8. 8.

    Bonjour JP (2005) Dietary protein: an essential nutrient for bone health. J Am Coll Nutr 24:526S–536S

    PubMed  CAS  Google Scholar 

  9. 9.

    Kerstetter JE, O'Brien KO, Insogna KL (1998) Dietary protein affects intestinal calcium absorption. Am J Clin Nutr 68:859–865

    PubMed  CAS  Google Scholar 

  10. 10.

    Lips P, Bouillon R, van Schoor NM, Vanderschueren D, Verschueren S, Kuchuk N, Milisen K, Boonen S (2010) Reducing fracture risk with calcium and vitamin D. Clin Endocrinol 73:277–285

    Article  CAS  Google Scholar 

  11. 11.

    Thissen JP, Ketelslegers JM, Underwood LE (1994) Nutritional regulation of the insulin-like growth factors. Endocr Rev 15:80–101

    PubMed  CAS  Google Scholar 

  12. 12.

    Schürch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP (1998) Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 128:801–809

    PubMed  Google Scholar 

  13. 13.

    Barzel US (1995) The skeleton as an ion exchange system: implications for the role of acid-base imbalance in the genesis of osteoporosis. J Bone Miner Res 10:1431–1436

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Barzel US, Massey LK (1998) Excess dietary protein can adversely affect bone. J Nutr 128:1051–1053

    PubMed  CAS  Google Scholar 

  15. 15.

    Moskowitz RW (2000) Role of collagen hydrolysate in bone and joint disease. Semin Arthritis Rheum 30:87–99

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Koyama Y, Hirota A, Mori H, Takahara H, Kuwaba K, Kusubata M, Matsubara Y, Kasugai S, Itoh M, Irie S (2001) Ingestion of gelatin has differential effect on bone mineral density and body weight in protein undernutrition. J Nutr Sci Vitaminol 47:84–86

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Wu J, Fujioka M, Sugimoto K, Mu G, Ishimi Y (2004) Assessment of effectiveness of oral administration of collagen peptide on bone metabolism in growing and mature rats. J Bone Miner Metab 22:547–553

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Nomura Y, Oohashi K, Watanabe M, Kasugai S (2005) Increase in bone mineral density through oral administration of shark gelatin to ovariectomized rats. Nutrition 21:1120–1126

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Guillerminet F, Beaupied H, Fabien-Soulé V, Tomé D, Benhamou CL, Roux C, Blais A (2010) Hydrolyzed collagen improves bone metabolism and biomechanical parameters in ovariectomized mice: an in vitro and in vivo study. Bone 46:827–834

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Ohara H, Matsumoto H, Ito K, Iwai K, Sato K (2007) Comparison of quantity and structures of hydroxyproline-containing peptides in human blood after oral ingestion of gelatin hydrolysates from different sources. J Agric Food Chem 55:1532–1535

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Reyes CD, Petrie TA, Burns KL, Schwartz Z, García AJ (2007) Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 28:3228–3235

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Nagy TR, Clair AL (2000) Precision and accuracy of dual-energy X-ray absorptiometry for determining in vivo body composition of mice. Obes Res 8:392–398

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Di Masso RJ, Font MT, Capozza RF, Detarsio G, Sosa F, Ferretti JL (1997) Long-bone biomechanics in mice selected for body conformation. Bone 20:539–545

    PubMed  Article  Google Scholar 

  25. 25.

    Blais A, Malet A, Mikogami T, Martin-Rouas C, Tome D (2009) Oral bovine lactoferrin improves bone status of ovariectomized mice. Am J Physiol Endocrinol Metab 296:E1281–E1288

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Bouxsein ML, Myers KS, Shultz KL, Donahue LR, Rosen CJ, Beamer WG (2005) Ovariectomy-induced bone loss varies among inbred strains of mice. J Bone Miner Res 20:1085–1092

    PubMed  Article  Google Scholar 

  27. 27.

    Malet A, Bournaud E, Lan A, Mikogami T, Tome D, Blais A (2011) Bovine lactoferrin improves bone status of ovariectomized mice via immune function. Bone 48:1028–1035

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Jochems C, Lagerquist M, Håkansson C, Ohlsson C, Carlsten H (2008) Long-term anti-arthritic and anti-osteoporotic effects of raloxifene in established experimental postmenopausal polyarthritis. Clin Exp Immunol 152:593–597

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Schroeder TM, Jensen ED, Westendorf JJ (2005) Runx2: a master organizer of gene transcription in developing and maturing osteoblasts. Birth Defects Res C Embryo Today 75:213–225

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Cano A, Dapía S, Noguera I, Pineda B, Hermenegildo C, Del Val R, Caeiro JR, García-Pérez MA (2008) Comparative effects of 17β-estradiol, raloxifene and genistein on bone 3D microarchitecture and volumetric bone mineral density in the ovariectomized mice. Osteoporos Int 19:793–800

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Sliwiński L, Folwarczna J, Nowińska B, Cegieła U, Pytlik M, Kaczmarczyk-Sedlak I, Trzeciak H, Trzeciak HI (2009) A comparative study of the effects of genistein, estradiol and raloxifene on the murine skeletal system. Acta Biochim Pol 2:261–270

    Google Scholar 

  32. 32.

    Marie PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473:98–105

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Burr DB (2002) The contribution of the organic matrix to bone's material properties. Bone 31(1):8–11

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Mann V, Hobson EE, Li B, Stewart TL, Grant SF, Robins SP, Aspden RM, Ralston SH (2001) A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 107(7):899–907

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Li CY, Schaffler MB, Wolde-Semait HT, Hernandez CJ, Jepsen KJ (2005) Genetic background influences cortical bone response to ovariectomy. J Bone Miner Res 20:2150–2158

    PubMed  Article  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Blais.

Additional information

This document contains proprietary data and other information within the meaning of article 21 of EU Regulation (EC) no. 1924/2006 (the “Regulation”). No parties other than the authors and their respective employers have a right to use or refer to this data and information within the meaning of this Regulation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guillerminet, F., Fabien-Soulé, V., Even, P.C. et al. Hydrolyzed collagen improves bone status and prevents bone loss in ovariectomized C3H/HeN mice. Osteoporos Int 23, 1909–1919 (2012). https://doi.org/10.1007/s00198-011-1788-6

Download citation

Keywords

  • Bone mineral density
  • Hydrolyzed collagen
  • Microarchitecture
  • Ovariectomized mice model