Skip to main content

Advertisement

Log in

Demographic, dietary, and serum factors and parathyroid hormone in the National Health and Nutrition Examination Survey

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Many determinants of parathyroid hormone (PTH) are unknown. In the National Health and Nutrition Examination Survey (NHANES), numerous factors not classically associated with calcium–phosphorus homeostasis, such as uric acid and smoking, are independently associated with PTH in adults without chronic kidney disease. Associations between serum phosphorus and PTH may vary by race.

Introduction

Although PTH may be an important biomarker for osteoporosis and cardiovascular disease, many determinants of PTH are unknown. We investigated associations between demographic, dietary, and serum factors and PTH level.

Methods

We studied 4,026 white, 1,792 black, and 1,834 Mexican-American adult participants without chronic kidney disease from the 2003–2004 and 2005–2006 NHANES.

Results

The mean serum PTH level was 38.3 pg/ml for whites, 42.6 pg/ml for blacks, and 41.3 pg/ml for Mexican-Americans. After adjusting for diet, body mass index, serum levels of calcium, phosphorus, 25-hydroxyvitamin D, creatinine, and other factors, smokers compared to non-smokers had lower PTH, ranging from −4.2 pg/ml (95% confidence interval (CI) −7.3 to −1.1) in Mexican-Americans to −6.1 pg/ml (95% CI −8.7 to −3.5) in blacks. After multivariate adjustment, PTH was higher in females compared to males, ranging from 1.1 pg/ml (95% CI −1.2 to 3.4) in Mexican-Americans to 4.5 pg/ml (95% CI 1.9 to 7.0) in blacks, and in older (>60 years) compared to younger participants (<30 years), ranging from 3.7 pg/ml (95% CI 1.3 to 6.1) in Mexican-Americans to 8.0 pg/ml (95% CI 5.4 to 10.7) in blacks. Higher uric acid was associated with higher PTH. In whites only, lower serum phosphorus and lower serum retinol were associated with higher PTH.

Conclusions

Numerous factors not classically associated with calcium–phosphorus homeostasis are independently associated with PTH and should be considered in future studies of PTH and chronic disease. Additional research is needed to elucidate mechanisms underlying identified associations with PTH and to explore possible racial differences in phosphorus handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor E, Curhan G, Forman J (2008) Parathyroid hormone and the risk of incident hypertension. J Hypertens 26:1390–1394

    Article  PubMed  CAS  Google Scholar 

  2. Jorde R, Sundsfjord J, Haug E, Bonaa K (2000) Relation between low calcium intake, parathyroid hormone, and blood pressure. Hypertension 35:1154–1159

    PubMed  CAS  Google Scholar 

  3. Kamycheva E, Sundsfjord J, Jorde R (2004) Serum parathyroid hormone levels predict coronary heart disease: the Tromsø Study. Eur J Cardiovasc Prev Rehabil 11:69–74

    Article  PubMed  Google Scholar 

  4. Sugimoto T, Tanigawa T, Onishi K, Fujimoto N, Matsuda A, Nakamori S, Matsuoka K, Nakamura T, Koji TI M (2009) Serum intact parathyroid hormone levels predict hospitalisation for heart failure. Heart 95:395–398

    Article  PubMed  CAS  Google Scholar 

  5. Hagström E, Hellman P, Larsson T et al (2009) Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation 119:2765–2771

    Article  PubMed  Google Scholar 

  6. Khaw K, Sneyd M, Compston J (1992) Bone density parathyroid hormone and 25-hydroxyvitamin D concentrations in middle aged women. BMJ 305:273–277

    Article  PubMed  CAS  Google Scholar 

  7. Pluijm S, Visser M, Smit J, Popp-Snijders C, Roos J, Lips P (2001) Determinants of bone mineral density in older men and women: body composition as mediator. J Bone Miner Res 16:2142–2151

    Article  PubMed  CAS  Google Scholar 

  8. Paik J, Curhan G, Forman J, Taylor E (2010) Determinants of plasma parathyroid hormone levels in young women. Calcif Tissue Int 87:211–217

    Article  PubMed  CAS  Google Scholar 

  9. Gutiérrez O, Isakova T, Andress D, Levin A, Wolf M (2008) Prevalence and severity of disordered mineral metabolism in Blacks with chronic kidney disease. Kidney Int 73:956–962

    Article  PubMed  Google Scholar 

  10. Bell N, Greene A, Epstein S, Oexmann M, Shaw S, Shary J (1985) Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest 76:470–473

    Article  PubMed  CAS  Google Scholar 

  11. Dawson-Hughes B, Harris S, Finneran S, Rasmussen H (1995) Calcium absorption responses to calcitriol in black and white premenopausal women. J Clin Endocrinol Metab 80:3068–3072

    Article  PubMed  CAS  Google Scholar 

  12. M'Buyamba-Kabangu J, Fagard R, Lijnen P, Bouillon R, Lissens W, Amery A (1987) Calcium, vitamin D-endocrine system, and parathyroid hormone in black and white males. Calcif Tissue Int 41:70–74

    Article  PubMed  Google Scholar 

  13. El-Hajj Fuleihan G, Gundberg C, Gleason R, Brown E, Stromski M, Grant F, Conlin P (1994) Racial differences in parathyroid hormone dynamics. J Clin Endocrinol Metab 79:1642–1647

    Article  Google Scholar 

  14. Boucher A, D'Amour P, Hamel L, Fugere P, Gascon-Barre M, Lepage R, Ste-Marie LG (1989) Estrogen replacement decreases the set point of parathyroid hormone stimulation by calcium in normal postmenopausal women. J Clin Endocrinol Metab 68:831–836

    Article  PubMed  CAS  Google Scholar 

  15. Endres D, Morgan C, Garry P, Omdahl J (1987) Age-related changes in serum immunoreactive parathyroid hormone and its biological action in healthy men and women. J Clin Endocrinol Metab 65:724–731

    Article  PubMed  CAS  Google Scholar 

  16. Chapuy M, Durr F, Chapuy P (1983) Age-related changes in parathyroid hormone and 25 hydroxycholecalciferol levels. J Gerontol 38:19–22

    PubMed  CAS  Google Scholar 

  17. Portale A, Lonergan E, Tanney D, Halloran B (1997) Aging alters calcium regulation of serum concentration of parathyroid hormone in healthy men. Am J Physiol 272:E139–E146

    PubMed  CAS  Google Scholar 

  18. Duarte B, Hargis G, Kukreja S (1988) Effects of estradiol and progesterone on parathyroid hormone secretion from human parathyroid tissue. J Clin Endocrinol Metab 66:584–587

    Article  PubMed  CAS  Google Scholar 

  19. Haden S, Brown E, Hurwitz S, Scott J, El-Hajj Fuleihan G (2000) The effects of age and gender on parathyroid hormone dynamics. Clin Endocrinol (Oxf) 52:329–338

    Article  CAS  Google Scholar 

  20. Sherman S, Hollis B, Tobin J (1990) Vitamin D status and related parameters in a healthy population: the effects of age, sex, and season. J Clin Endocrinol Metab 71:405–413

    Article  PubMed  CAS  Google Scholar 

  21. Marcus R, Madvig P, Young G (1984) Age-related changes in parathyroid hormone and parathyroid hormone action in normal humans. J Clin Endocrinol Metab 58:223–230

    Article  PubMed  CAS  Google Scholar 

  22. Minisola S, Pacitti M, Scarda A, Rosso R, Romagnoli E, Carnevale V, Scarnecchia L, Mazzuoli G (1993) Serum ionized calcium, parathyroid hormone and related variables: effect of age and sex. Bone Miner 23:183–193

    Article  PubMed  CAS  Google Scholar 

  23. MacDonald P, Ritter C, Brown A, Slatopolsky E (1994) Retinoic acid suppresses parathyroid hormone (PTH) secretion and PreproPTH mRNA levels in bovine parathyroid cell culture. J Clin Invest 93:725–730

    Article  PubMed  CAS  Google Scholar 

  24. Liu W, Ridefelt P, Akerström G, Hellman P (2001) Differentiation of human parathyroid cells in culture. J Endocrinol 168:417–425

    Article  PubMed  CAS  Google Scholar 

  25. Hsu C, Patel S, Young E, Vanholder R (1991) Effects of purine derivatives on calcitriol metabolism in rats. Am J Physiol 260:F596–F601

    PubMed  CAS  Google Scholar 

  26. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS) (2003–2006) National Health and Nutrition Examination Survey Data. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Hyattsville

  27. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). Revised analytical note for NHANES 2000–2006 and NHANES III (1988–1994) 25-hydroxyvitamin D analysis (revised November 2010). http://www.cdc.gov/nchs/data/nhanes/nhanes3/VitaminD_analyticnote.pdf. Accessed 13 May 2011

  28. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1–S266

    Article  Google Scholar 

  29. Iwaniec U, Haynatzki G, Fung Y, Akhter M, Haven M, Cullen D (2002) Effects of nicotine on bone and calciotropic hormones in aged ovariectomized rats. J Musculoskelet Neuronal Interact 2:469–478

    PubMed  CAS  Google Scholar 

  30. Iwaniec U, Fung Y, Akhter M, Haven M, Nespor S, Haynatzki G, Cullen D (2001) Effects of nicotine on bone mass, turnover, and strength in adult female rats. Calcif Tissue Int 68:358–364

    Article  PubMed  CAS  Google Scholar 

  31. Hoffmann D, Hoffmann I (1997) The changing cigarette, 1950–1995. J Toxicol Environ Health 50:307–364

    Article  PubMed  CAS  Google Scholar 

  32. Feig D, Kang D, Johnson R (2008) Uric acid and cardiovascular risk. N Engl J Med 359:1811–1821

    Article  PubMed  CAS  Google Scholar 

  33. Niskanen L, Laaksonen D, Nyyssönen K, Alfthan G, Lakka H, Lakka T, Salonen J (2004) Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med 164:1546–1551

    Article  PubMed  CAS  Google Scholar 

  34. Sundström J, Sullivan L, D'Agostino R, Levy D, Kannel W, Vasan R (2005) Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension 45:28–33

    PubMed  Google Scholar 

  35. Mellen P, Bleyer A, Erlinger T, Evans G, Nieto F, Wagenknecht L, Wofford M, Herrington D (2006) Serum uric acid predicts incident hypertension in a biethnic cohort: the atherosclerosis risk in communities study. Hypertension 48:1037–1042

    Article  PubMed  CAS  Google Scholar 

  36. Gloth F, Gundberg C, Hollis B, Haddad JJ, Tobin J (1995) Vitamin D deficiency in homebound elderly persons. JAMA 274:1683–1686

    Article  PubMed  Google Scholar 

  37. Chapuy M, Chapuy P, Meunier P (1987) Calcium and vitamin D supplements: effects on calcium metabolism in elderly people. Am J Clin Nutr 46:324–328

    PubMed  CAS  Google Scholar 

  38. Alevizaki C, Ikkos D, Singhelakis P (1973) Progressive decrease of true intestinal calcium absorption with age in normal man. J Nucl Med 14:760–762

    PubMed  CAS  Google Scholar 

  39. Gallagher J, Riggs B, Eisman J, Hamstra A, Arnaud S, DeLuca H (1979) Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: effect of age and dietary calcium. J Clin Invest 64:729–736

    Article  PubMed  CAS  Google Scholar 

  40. Bullamore J, Wilkinson R, Gallagher J, Nordin B, Marshall D (1970) Effect of age on calcium absorption. Lancet 296:535–537

    Article  Google Scholar 

  41. Eastell R, Yergey A, Vieira N, Cedel S, Kumar R, Riggs B (1991) Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function, and age in women: evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. J Bone Miner Res 6:125–132

    Article  PubMed  CAS  Google Scholar 

  42. Naveh-Many T, Almogi G, Livni N, Silver J (1992) Estrogen receptors and biologic response in rat parathyroid tissue and C cells. J Clin Invest 90:2434–2438

    Article  PubMed  CAS  Google Scholar 

  43. Cosman F, Shen V, Xie F, Seibel M, Ratcliffe A, Lindsay R (1993) Estrogen protection against bone resorbing effects of parathyroid hormone infusion. Assessment by use of biochemical markers. Ann Intern Med 118:337–343

    PubMed  CAS  Google Scholar 

  44. Kärkkäinen M, Lamberg-Allardt C (1996) An acute intake of phosphate increases parathyroid hormone secretion and inhibits bone formation in young women. J Bone Miner Res 11:1905–1912

    Article  PubMed  Google Scholar 

  45. Kemi VE, Karkkainen MU, Lamberg-Allardt CJ (2006) High phosphorous intakes acutely and negatively affect Ca and bone metabolism in a dose-dependent manner in healthy young females. Br J Nutr 96:545–552

    PubMed  CAS  Google Scholar 

  46. Denda M, Finch J, Slatopolsky E (1996) Phosphorus accelerates the development of parathyroid hyperplasia and secondary hyperparathyroidism in rats with renal failure. Am J Kidney Dis 28:596–602

    Article  PubMed  CAS  Google Scholar 

  47. Almaden Y, Canalejo A, Hernandez A, Ballesteros E, Garcia-Navarro S, Torres A, Rodriguez M (1996) Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res 11:970–976

    Article  PubMed  CAS  Google Scholar 

  48. Bergwitz C, Jüppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61:91–104

    Article  PubMed  CAS  Google Scholar 

  49. Berndt T, Kumar R (2009) Novel mechanisms in the regulation of phosphorus homeostasis. Physiology (Bethesda) 24:17–25

    Article  CAS  Google Scholar 

  50. Silver J, Naveh-Many T (2009) Phosphate and the parathyroid. Kidney Int 75:898–905

    Article  PubMed  CAS  Google Scholar 

  51. Gutiérrez O, Isakova T, Smith K, Epstein M, Patel N, Wolf M (2010) Racial differences in postprandial mineral ion handling in health and in chronic kidney disease. Nephrol Dial Transplant 25:3970–3977

    Article  PubMed  Google Scholar 

  52. Cosman F, Morgan D, Nieves J, Shen V, Luckey M, Dempster D, Lindsay R, Parisien M (1997) Resistance to bone resorbing effects of PTH in black women. J Bone Miner Res 12:958–966

    Article  PubMed  CAS  Google Scholar 

  53. Liu W, Hellman P, Li Q, Yu W, Juhlin C, Nordlinder H, Rollman O, Akerström G, Törmä H, Melhus H (1996) Biosynthesis and function of all-trans- and 9-cis-retinoic acid in parathyroid cells. Biochem Biophys Res Commun 229:922–929

    Article  PubMed  CAS  Google Scholar 

  54. Willett W (1998) Nutritional epidemiology. Oxford University Press, New York

    Book  Google Scholar 

  55. Bolland MJ, Grey AB, Ames RW, Horne AM, Gamble GD, Reid IR (2006) Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone 38:317–321

    Article  PubMed  CAS  Google Scholar 

  56. Pitroda A, Harris S, Dawson-Hughes B (2009) The association of adiposity with parathyroid hormone in healthy older adults. Endocrine 36:218–223

    Article  PubMed  CAS  Google Scholar 

  57. Bolland M, Grey A, Gamble G, Reid I (2005) Association between primary hyperparathyroidism and increased body weight: a meta-analysis. J Clin Endocrinol Metab 90:1525–1530

    Article  PubMed  CAS  Google Scholar 

  58. Herfarth K, Schmidt-Gayk H, Graf S, Maier A (1992) Circadian rhythm and pulsatility of parathyroid hormone secretion in man. Clinical endocrinology 37:511-519

    Google Scholar 

Download references

Acknowledgments

Work on this study was supported by the Cooperative Studies Program of the Department of Veterans Affairs Office of Research Development. Additional research support was obtained from grants DK084707, DK007527, and R01 HL092947 from the National Institutes of Health.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Paik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paik, J.M., Farwell, W.R. & Taylor, E.N. Demographic, dietary, and serum factors and parathyroid hormone in the National Health and Nutrition Examination Survey. Osteoporos Int 23, 1727–1736 (2012). https://doi.org/10.1007/s00198-011-1776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1776-x

Keywords

Navigation