Skip to main content

Advertisement

Log in

Bone structure and turnover in type 2 diabetes mellitus

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We compared skeletal parameters in type 2 diabetic (T2DM) and non-diabetic postmenopausal women. Bone structure by dual energy x-ray absorptiometry (DXA) and HR-pQCT was not different, although procollagen type 1 amino-terminal propeptide (P1NP) and osteocalcin levels were lower in T2DM.

Introduction

T2DM is associated with increased fracture risk, but, paradoxically, with higher cross-sectional bone density (BMD) as measured by DXA. We sought explanations to this puzzle by investigating detailed structural and biochemical skeletal parameters in T2DM.

Methods

Cross-sectional comparison of 25 postmenopausal T2DM women and 25 matched controls using DXA, high-resolution peripheral quantitative computed tomography (HR-pQCT) and biochemical bone turnover markers.

Results

BMD by DXA did not differ between T2DM and controls. HR-pQCT assessment also did not differ, with the exception of cortical area at the tibia, which tended to be lower in the diabetics (difference of 12 ± 6 [mean ± SD] mm, p = 0.06). P1NP and osteocalcin levels were lower in T2DM as compared to controls (P1NP, 34.3 ± 16 vs. 57.3 ± 28 ng/ml; p = 0.005; osteocalcin, 4.5 ± 2 vs. 6.2 ± 2 nmol/L; p = 0.001).

Conclusions

Postmenopausal women with T2DM had lower levels of bone formation markers as compared to controls. Aside from a possible decrease in cortical bone area at a weight-bearing site, bone structure was not altered in T2DM. Lower bone turnover may be a skeletal parameter that is present in T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanley DA, Brown JP, Tenenhouse A et al (2003) Associations among disease conditions, bone mineral density, and prevalent vertebral deformities in men and women 50 years of age and older: cross-sectional results from the Canadian Multicentre Osteoporosis Study. J Bone Miner Res 18:784–790

    Article  PubMed  CAS  Google Scholar 

  2. Strotmeyer ES, Cauley JA, Schwartz AV et al (2004) Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: the health, aging, and body composition study. J Bone Miner Res 19:1084–1091

    Article  PubMed  Google Scholar 

  3. Bonds DE, Larson JC, Schwartz AV et al (2006) Risk of fracture in women with type 2 diabetes: the women's health initiative observational study. J Clin Endocrinol Metab 91:3404–3410

    Article  PubMed  CAS  Google Scholar 

  4. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 18:427–444

    Article  PubMed  CAS  Google Scholar 

  5. Lipscombe LL, Jamal SA, Booth GL, Hawker GA (2007) The risk of hip fractures in older individuals with diabetes: a population-based study. Diab Care 30:835–841

    Article  Google Scholar 

  6. Strotmeyer ES, Cauley JA, Schwartz AV et al (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165:1612–1617

    Article  PubMed  Google Scholar 

  7. Janghorbani M, Feskanich D, Willett WC, Hu F (2006) Prospective study of diabetes and risk of hip fracture: the Nurses' Health Study. Diab Care 29:1573–1578

    Article  Google Scholar 

  8. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 24:702–709

    Article  PubMed  CAS  Google Scholar 

  9. Vestergaard P, Rejnmark L, Mosekilde L (2009) Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 84:45–55

    Article  PubMed  CAS  Google Scholar 

  10. Grey A (2008) Skeletal consequences of thiazolidinedione therapy. Osteoporos Int 19:129–137

    Article  PubMed  CAS  Google Scholar 

  11. Melton LJ 3rd, Riggs BL, Leibson CL et al (2008) A bone structural basis for fracture risk in diabetes. J Clin Endocrinol Metab 93:4804–4809

    Article  PubMed  CAS  Google Scholar 

  12. Fulzele K, Riddle RC, DiGirolamo DJ et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319

    Article  PubMed  CAS  Google Scholar 

  13. Petit MA, Paudel ML, Taylor BC et al (2010) Bone mass and strength in older men with type 2 diabetes: The osteoporotic fractures in men study. J Bone Miner Res 25:285–291

    Article  PubMed  Google Scholar 

  14. Gerdhem P, Isaksson A, Akesson K, Obrant KJ (2005) Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 16:1506–1512

    Article  PubMed  CAS  Google Scholar 

  15. Kanazawa I, Yamaguchi T, Yamamoto M et al (2009) Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 94:45–49

    Article  PubMed  CAS  Google Scholar 

  16. Sayinalp S, Gedik O, Koray Z (1995) Increasing serum osteocalcin after glycemic control in diabetic men. Calcif Tissue Int 57:422–425

    Article  PubMed  CAS  Google Scholar 

  17. Rosato MT, Schneider SH, Shapses SA (1998) Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in noninsulin-dependent diabetes mellitus. Calcif Tissue Int 63:107–111

    Article  PubMed  CAS  Google Scholar 

  18. Dobnig H, Piswanger-Solkner JC, Roth M et al (2006) Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab 91:3355–3363

    Article  PubMed  CAS  Google Scholar 

  19. Okazaki R, Totsuka Y, Hamano K et al (1997) Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab 82:2915–2920

    Article  PubMed  CAS  Google Scholar 

  20. Cohen A, Liu XS, Stein EM et al (2009) Bone microarchitecture and stiffness in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 94:4351–4360

    Article  PubMed  CAS  Google Scholar 

  21. Walker MD, McMahon DJ, Udesky J, Liu G, Bilezikian JP (2009) Application of high-resolution skeletal imaging to measurements of volumetric BMD and skeletal microarchitecture in Chinese-American and white women: explanation of a paradox. J Bone Miner Res 24:1953–1959

    Article  PubMed  Google Scholar 

  22. Cohen A, Dempster DW, Muller R et al (2010) Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int 21(2):263–273

    Article  PubMed  CAS  Google Scholar 

  23. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  PubMed  CAS  Google Scholar 

  24. Gomez B Jr, Ardakani S, Ju J et al (1995) Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum. Clin Chem 41:1560–1566

    PubMed  CAS  Google Scholar 

  25. Rosenquist C, Qvist P, Bjarnason N, Christiansen C (1995) Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies. Clin Chem 41:1439–1445

    PubMed  CAS  Google Scholar 

  26. Clowes JA, Allen HC, Prentis DM, Eastell R, Blumsohn A (2003) Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. J Clin Endocrinol Metab 88:4867–4873

    Article  PubMed  CAS  Google Scholar 

  27. Inaba M, Nishizawa Y, Mita K et al (1999) Poor glycemic control impairs the response of biochemical parameters of bone formation and resorption to exogenous 1,25-dihydroxyvitamin D3 in patients with type 2 diabetes. Osteoporos Int 9:525–531

    Article  PubMed  CAS  Google Scholar 

  28. Inaba M, Terada M, Koyama H et al (1995) Influence of high glucose on 1,25-dihydroxyvitamin D3-induced effect on human osteoblast-like MG-63 cells. J Bone Miner Res 10:1050–1056

    Article  PubMed  CAS  Google Scholar 

  29. Terada M, Inaba M, Yano Y et al (1998) Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 22:17–23

    Article  PubMed  CAS  Google Scholar 

  30. Zinman B, Haffner SM, Herman WH et al (2010) Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 95:134–142

    Article  PubMed  CAS  Google Scholar 

  31. Kindblom JM, Ohlsson C, Ljunggren O et al (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24:785–791

    Article  PubMed  CAS  Google Scholar 

  32. Eastell R, Delmas PD, Hodgson SF, Eriksen EF, Mann KG, Riggs BL (1988) Bone formation rate in older normal women: concurrent assessment with bone histomorphometry, calcium kinetics, and biochemical markers. J Clin Endocrinol Metab 67:741–748

    Article  PubMed  CAS  Google Scholar 

  33. Vico L, Zouch M, Amirouche A et al (2008) High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res 23:1741–1750

    Article  PubMed  Google Scholar 

  34. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22:425–433

    Article  PubMed  Google Scholar 

  35. Ferron M, Wei J, Yoshizawa T et al (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308

    Article  PubMed  CAS  Google Scholar 

  36. Petit MA, Paudel ML, Taylor BC et al (2010) Bone Mass and Strength in Older Men with Type 2 Diabetes: The osteoporotic fractures in men study. J Bone Miner Res 25(2):285–291

    Article  PubMed  Google Scholar 

  37. Kazakia GJ, Hyun B, Burghardt AJ et al (2008) In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res 23:463–474

    Article  PubMed  Google Scholar 

  38. Paul RG, Bailey AJ (1996) Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol 28:1297–1310

    Article  PubMed  CAS  Google Scholar 

  39. Schwartz AV, Garnero P, Hillier TA et al (2009) Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94:2380–2386

    Article  PubMed  CAS  Google Scholar 

  40. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93:1013–1019

    Article  PubMed  CAS  Google Scholar 

  41. Stein EM, Liu XS, Nickolas TL et al (2010) Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res 25:2296–2305

    Article  Google Scholar 

Download references

Acknowledgment

Irving Institute for Clinical and Translational Research CTSA/CTO pilot award, NIH AR055968, NIH AI065200-05

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, A., Yin, M.T., Stein, E. et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int 23, 635–641 (2012). https://doi.org/10.1007/s00198-011-1595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1595-0

Keywords

Navigation