Algorithms can be used to identify fragility fracture cases in physician-claims databases

Abstract

Summary

Physician-billing claims databases can be used to determine the incidence of fractures in the community. This study tested three algorithms designed to accurately and reliably identify fractures from a physician-billing claims database and concluded that they were useful for identifying all types of fractures, except vertebral, sacral, and coccyx fractures.

Introduction

To develop and validate algorithms that identify fracture events from a physician-billing claims database (PCDs).

Methods

Three algorithms were developed using physician’s specialty, diagnostic, and medical service codes used in a PCD from the province of Quebec. Algorithm validity was assessed via calculation of positive predictive values (PPV; via verification of a sample of algorithm-identified cases with hospitalization files) and sensitivities (via cross-referencing respective algorithm-identified fracture cases with a well-characterized fracture cohort).

Results

PPV and sensitivity varied across fracture sites. For most fracture sites, the PPV with algorithm 3 was higher than with algorithms 1 or 2. Except for knee fracture, the PPVs ranged from 0.81 to 0.96. Sensitivities were low at the vertebral, sacral, and coccyx sites (0.40–0.50), but high at all other fracture sites. For 95% of fractures, the fracture site identified by algorithm agreed with the fracture site from patients’ medical records. Fracture dates identified by algorithm were within 2 days of the actual fracture date in 88% of fracture cases. Among cases identified by algorithm 3 to have had an open reduction (N = 461), 95% underwent surgery according to their respective medical charts.

Conclusion

Algorithms using PCDs are accurate and reliable for identifying incident fractures associated with osteoporosis-related fracture sites. The identification of these fractures in the community is important for helping to estimate the burden associated with osteoporosis and the utility of programs designed to reduce the rates of fragility fracture.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650

  2. 2.

    Melton LJ III, Chrischilles EA, Cooper C, Lane AW, Riggs BL (1992) Perspective. How many women have osteoporosis? J Bone Miner Res 7:1005–1010

    PubMed  Article  Google Scholar 

  3. 3.

    Bessette L, Ste-Marie LG, Jean S, Davison KS, Beaulieu M, Baranci M, Bessant J, Brown JP (2008) The care gap in diagnosis and treatment of women with a fragility fracture. Osteoporos Int 19:79–86

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Cooper C (1997) The crippling consequences of fractures and their impact on quality of life. Am J Med 103:12S–17S

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Ioannidis G, Papaioannou A, Hopman WM, khtar-Danesh N, Anastassiades T, Pickard L, Kennedy CC, Prior JC, Olszynski WP, Davison KS, Goltzman D, Thabane L, Gafni A, Papadimitropoulos EA, Brown JP, Josse RG, Hanley DA, Adachi JD (2009) Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ 181:265–271

    PubMed  Article  Google Scholar 

  6. 6.

    Melton LJ III (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141

    PubMed  Article  Google Scholar 

  7. 7.

    Burge R, wson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 22:465–475

    PubMed  Article  Google Scholar 

  8. 8.

    Elliot-Gibson V, Bogoch ER, Jamal SA, Beaton DE (2004) Practice patterns in the diagnosis and treatment of osteoporosis after a fragility fracture: a systematic review. Osteoporos Int 15:767–778

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Giangregorio L, Papaioannou A, Cranney A, Zytaruk N, Adachi JD (2006) Fragility fractures and the osteoporosis care gap: an international phenomenon. Semin Arthritis Rheum 35:293–305

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Papaioannou A, Giangregorio L, Kvern B, Boulos P, Ioannidis G, Adachi JD (2004) The osteoporosis care gap in Canada. BMC Musculoskelet Disord 5:11-

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Cadre et stratégie de prévention et de gestion de l’ostéoporose. Conseil ontarien des services de santé pour les femmes 2000. 2000; 49

  12. 12.

    Report of the Surgeon General’s workshop on osteoporosis and bone health. U.S. Department of health and Human Services. 2005; 55

  13. 13.

    Lippuner K, Golder M, Greiner R (2005) Epidemiology and direct medical costs of osteoporotic fractures in men and women in Switzerland. Osteoporos Int 16(Suppl 2):S8–S17, Epub 2004 Sep 16: S8–S17

    PubMed  Article  Google Scholar 

  14. 14.

    Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA III, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Lix LM, Yogendran MS, Leslie WD, Shaw SY, Baumgartner R, Bowman C, Metge C, Gumel A, Hux J, James RC (2008) Using multiple data features improved the validity of osteoporosis case ascertainment from administrative databases. J Clin Epidemiol 61:1250–1260

    PubMed  Article  Google Scholar 

  16. 16.

    Zuckerman IH, Sato M, Hsu VD, Hernandez JJ (2007) Validation of a method for identifying nursing home admissions using administrative claims. BMC Health Serv Res 7:202

    Google Scholar 

  17. 17.

    Ray WA, Griffin MR, Fought RL, Adams ML (1992) Identification of fractures from computerized Medicare files. J Clin Epidemiol 45:703–714

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Potter BK, Manuel D, Speechley KN, Gutmanis IA, Campbell MK, Koval JJ (2005) Is there value in using physician billing claims along with other administrative health care data to document the burden of adolescent injury? An exploratory investigation with comparison to self-reports in Ontario, Canada. BMC Health Serv Res 5:15-

    PubMed  Article  Google Scholar 

  19. 19.

    Dendukuri N, McCusker J, Bellavance F, Cardin S, Verdon J, Karp I, Belzile E (2005) Comparing the validity of different sources of information on emergency department visits: a latent class analysis. Med Care 43:266–275

    PubMed  Article  Google Scholar 

  20. 20.

    Kostylova A, Swaine B, Feldman D (2005) Concordance between childhood injury diagnoses from two sources: an injury surveillance system and a physician billing claims database. Inj Prev 11:186–190

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Wilchesky M, Tamblyn RM, Huang A (2004) Validation of diagnostic codes within medical services claims. J Clin Epidemiol 57:131–141

    PubMed  Article  Google Scholar 

  22. 22.

    Tamblyn R, Reid T, Mayo N, McLeod P, Churchill-Smith M (2000) Using medical services claims to assess injuries in the elderly: sensitivity of diagnostic and procedure codes for injury ascertainment. J Clin Epidemiol 53:183–194

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Monfared AA, LeLorier J (2006) Accuracy and validity of using medical claims data to identify episodes of hospitalizations in patients with COPD. Pharmacoepidemiol Drug Saf 15:19–29

    PubMed  Article  Google Scholar 

  24. 24.

    Levy AR, Mayo NE, Grimard G (1995) Rates of transcervical and pertrochanteric hip fractures in the province of Quebec, Canada, 1981-1992. Am J Epidemiol 142:428–436

    PubMed  CAS  Google Scholar 

  25. 25.

    Sattin RW, Lambert Huber DA, DeVito CA, Rodriguez JG, Ros A, Bacchelli S, Stevens JA, Waxweiler RJ (1990) The incidence of fall injury events among the elderly in a defined population. Am J Epidemiol 131:1028–1037

    PubMed  CAS  Google Scholar 

  26. 26.

    Bessette L, Ste-Marie LG, Jean S, Davison KS, Beaulieu M, Baranci M, Bessant J, Brown JP (2008) Recognizing osteoporosis and its consequences in Quebec (ROCQ): background, rationale, and methods of an anti-fracture patient health-management programme. Contemp Clin Trials 29:194–210

    PubMed  Article  Google Scholar 

  27. 27.

    Mackey DC, Lui LY, Cawthon PM, Bauer DC, Nevitt MC, Cauley JA, Hillier TA, Lewis CE, Barrett-Connor E, Cummings SR (2007) High-trauma fractures and low bone mineral density in older women and men. JAMA 298:2381–2388

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Curtis JR, Taylor AJ, Matthews RS, Ray MN, Becker DJ, Gary LC, Kilgore ML, Morrisey MA, Saag KG, Warriner A, Delzell E (2009) “Pathologic” fractures: should these be included in epidemiologic studies of osteoporotic fractures? Osteoporos Int 20:1969–1972

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A (2001) The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 12:417–427

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    (2010) Régie de l’assurance maladie du Québec. Outils de recherche de l’information statistique (ORIS). www.ramp.gouv.qc.ca. Accessed 1 May 2010

  31. 31.

    Bernard P, LaPointe C (1995) Mesure statistique en épidémiologie. 175–190

  32. 32.

    Altman DG, Bland JM (1994) Diagnostic tests 2: predictive values. BMJ 309:102-

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Altman DG, Bland JM (1994) Diagnostic tests. 1: sensitivity and specificity. BMJ 308:1552-

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Biggerstaff BJ (2000) Comparing diagnostic tests: a simple graphic using likelihood ratios. Stat Med 19:649–663

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Curtis JR, Mudano AS, Solomon DH, Xi J, Melton ME, Saag KG (2009) Identification and validation of vertebral compression fractures using administrative claims data. Med Care 47:69–72

    PubMed  Article  Google Scholar 

  36. 36.

    Pentek M, Horvath C, Boncz I, Falusi Z, Toth E, Sebestyen A, Majer I, Brodszky V, Gulacsi L (2008) Epidemiology of osteoporosis related fractures in Hungary from the nationwide health insurance database, 1999–2003. Osteoporos Int 19:243–249

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Lentle BC, Brown JP, Khan A, Leslie WD, Levesque J, Lyons DJ, Siminoski K, Tarulli G, Josse RG, Hodsman A (2007) Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures. Can Assoc Radiol J 58:27–36

    PubMed  Google Scholar 

  38. 38.

    Cataldi V, Laporta T, Sverzellati N, De FM, Zompatori M (2008) Detection of incidental vertebral fractures on routine lateral chest radiographs. Radiol Med 113:968–977

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by an unrestricted grant from Servier Canada Inc. It is also part of the study Recognizing Osteoporosis and its Consequences in Québec (ROCQ), which has been made possible through the support of founding partners Merck Canada, Sanofi-Aventis Canada Inc., and Warner Chilcott, as well as major partner Amgen Canada Inc. and minor partners Eli Lilly Canada Inc. and Novartis Pharma Canada Inc.

We would like to acknowledge the important contribution of medical archivist Karine Picard who conducted the review of cases in hospitals’ medical records and Dr. K. Shawn Davison for revision of the manuscript.

Conflicts of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Jean.

Appendix 1

Appendix 1

Table 7 Medical services billing and ICD-9 codes selected in the physician claims database
Table 8 Predictive positive value by fracture site and type of medical service billing code

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jean, S., Candas, B., Belzile, É. et al. Algorithms can be used to identify fragility fracture cases in physician-claims databases. Osteoporos Int 23, 483–501 (2012). https://doi.org/10.1007/s00198-011-1559-4

Download citation

Keywords

  • Administrative database
  • Algorithms
  • Fractures
  • Osteoporosis
  • Sensitivity and specificity
  • Validation studies as topic