Skip to main content


Log in

Intra-and inter-reader reliability of semi-automated quantitative morphometry measurements and vertebral fracture assessment using lateral scout views from computed tomography

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript



Intra-and inter-reader reliability of semi-automated quantitative vertebral morphometry measurements was determined using lateral computed tomography (CT) scout views. The method requires less time than conventional morphometry. Reliability was excellent for vertebral height measurements, good for height ratios, and comparable to semi-quantitative grading by radiologists for identification of vertebral fractures.


Underdiagnosis and undertreatment of vertebral fracture (VFx) is a well-known problem worldwide. Thus, new methods are needed to facilitate identification of VFx. This study aimed to determine intra- and inter-reader reliability of semi-automated quantitative vertebral morphometry based on shape-based statistical modeling (SpineAnalyzer, Optasia Medical, Cheadle, UK).


Two non-radiologists independently assessed vertebral morphometry from CT lateral scout views at two time points in 96 subjects (50 men, 46 women, 70.3 ± 8.9 years) selected from the Framingham Heart Study Offspring and Third Generation Multi-Detector CT Study. VFxs were classified based solely on morphometry measurements using Genant's criteria. Intraclass correlation coefficients (ICCs), root mean squared coefficient of variation (RMS CV) and kappa (k) statistics were used to assess reliability.


We analyzed 1,246 vertebrae in 96 subjects. The analysis time averaged 5.4 ± 1.7 min per subject (range, 3.2–9.1 min). Intra-and inter-reader ICCs for vertebral heights were excellent (>0.95) for all vertebral levels combined. Intra-and inter-reader RMS CV for height measurements ranged from 2.5% to 3.9% and 3.3% to 4.4%, respectively. Reliability of vertebral height ratios was good to fair. Based on morphometry measurements alone, readers A and B identified 51–52 and 46–59 subjects with at least one prevalent VFx, respectively, and there was a good intra-and inter-reader agreement (k = 0.59–0.69) for VFx identification.


Semi-automated quantitative vertebral morphometry measurements from CT lateral scout views are convenient and reproducible, and may facilitate assessment of VFx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others



Algorithm-based approach for the qualitative identification of vertebral fracture


Body mass index


Confidence interval


Computed tomography


Coefficient of variation

d B :

Biconcave deformity percentage

d C :

Crush deformity percentage

d W :

Wedge deformity percentage


Dual energy X-ray absorptiometry

h A :

Height anterior

h M :

Height mid

h P :

Height posterior


Intraclass correlation coefficients

K :





Morphometric radiography


Morphometric X-ray absorptiometry


Quantitative computed tomography


Quantitative vertebral morphometry measurement

r B :

Biconcave ratio

r C :

Crush ratio

r W :

Wedge ratio


Root mean squared CV






Vertebral fracture


  1. van Helden S, Cals J, Kessels F, Brink P, Dinant GJ, Geusens P (2006) Risk of new clinical fractures within 2 years following a fracture. Osteoporos Int 17:348–354

    Article  PubMed  Google Scholar 

  2. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739

    Article  PubMed  CAS  Google Scholar 

  3. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382

    Article  PubMed  CAS  Google Scholar 

  4. Edmond SL, Kiel DP, Samelson EJ, Kelly-Hayes M, Felson DT (2005) Vertebral deformity, back symptoms, and functional limitations among older women: the Framingham Study. Osteoporos Int 16:1086–1095

    Article  PubMed  Google Scholar 

  5. Melton LJ 3rd (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141

    Article  PubMed  Google Scholar 

  6. Lau E, Ong K, Kurtz S, Schmier J, Edidin A (2008) Mortality following the diagnosis of a vertebral compression fracture in the Medicare population. J Bone Joint Surg Am 90:1479–1486

    Article  PubMed  Google Scholar 

  7. Delmas PD, van de Langerijt L, Watts NB, Eastell R, Genant H, Grauer A, Cahall DL, IMPACT Study Group (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 20(4):557–563

    Article  PubMed  Google Scholar 

  8. Freedman BA, Potter BK, Nesti LJ, Giuliani JR, Hampton C, Kuklo TR (2008) Osteoporosis and vertebral compression fractures-continued missed opportunities. Spine J 8:756–762

    Article  PubMed  Google Scholar 

  9. Siris ES, Bilezikian JP, Rubin MR, Black DM, Bockman RS, Bone HG, Hochberg MC, McClung MR, Schnitzer TJ (2003) Pins and plaster aren't enough: a call for the evaluation and treatment of patients with osteoporotic fractures. J Clin Endocrinol Metab 88:3482–3486

    Article  PubMed  CAS  Google Scholar 

  10. Lems WF (2007) Clinical relevance of vertebral fractures. Ann Rheum Dis 66:2–4

    Article  PubMed  CAS  Google Scholar 

  11. Lentle BC, Brown JP, Khan A, Leslie WD, Levesque J, Lyons DJ, Siminoski K, Tarulli G, Josse RG, Hodsman A (2007) Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures. Can Assoc Radiol J 58:27–36

    PubMed  Google Scholar 

  12. Majumdar SR, Kim N, Colman I, Chahal AM, Raymond G, Jen H, Siminoski KG, Hanley DA, Rowe BH (2005) Incidental vertebral fractures discovered with chest radiography in the emergency department: prevalence, recognition, and osteoporosis management in a cohort of elderly patients. Arch Intern Med 165:905–909

    Article  PubMed  Google Scholar 

  13. Gehlbach SH, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood JR (2000) Recognition of vertebral fracture in a clinical setting. Osteoporos Int 11:577–582

    Article  PubMed  CAS  Google Scholar 

  14. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148

    Article  PubMed  CAS  Google Scholar 

  15. Jiang G, Eastell R, Barrington NA, Ferrar L (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15:887–896

    Article  PubMed  CAS  Google Scholar 

  16. Herxthal LM (1968) Measurement of anterior vertebral compressions and biconcave vertebrae. Am J Roentgenol Radium Ther Nucl Med 103(3):635–644

    Google Scholar 

  17. Prevrhal S, Krege JH, Chen P, Genant H, Black DM (2009) Teriparatide vertebral fracture risk reduction determined by quantitative and qualitative radiographic assessment. Curr Med Res Opin 25(4):921–928

    Article  PubMed  CAS  Google Scholar 

  18. Ferrar L, Jiang G, Schousboe JT, DeBold CR, Eastell R (2008) Algorithm-based qualitative and semiquantitative identification of prevalent vertebral fracture: agreement between different readers, imaging modalities, and diagnostic approaches. J Bone Miner Res 23(3):417–424

    Article  PubMed  Google Scholar 

  19. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11(7):984–996

    Article  PubMed  CAS  Google Scholar 

  20. Grados F, Fechtenbaum J, Flipon E, Kolta S, Roux C, Fardellone P (2009) Radiographic methods for evaluating osteoporotic vertebral fractures. Joint Bone Spine 76(3):241–247

    Article  PubMed  Google Scholar 

  21. Brett A, Miller CG, Hayes CW, Krasnow J, Ozanian T, Caminis J, Block JE, van Kuijk C (2009) Development of a clinical workflow tool to enhance the detection of vertebral fractures: accuracy and precision evaluation. Spine 34(22):2437–2443

    Article  PubMed  Google Scholar 

  22. Samelson EJ, Christiansen BA, Demissie S, Broe KE, Zhou Y, Meng CA, Yu W, Cheng X, O'Donnell CJ, Hoffmann U, Genant HK, Kiel DP (2010) Reliability of vertebral fracture assessment using multidetector CT lateral scout views: the Framingham Osteoporosis Study. Osteoporos Int May 21 (in press)

  23. Moselewski F, O'Donnell CJ, Achenbach S, Ferencik M, Massaro J, Nguyen A, Cury RC, Abbara S, Jang IK, Brady TJ, Hoffmann U (2005) Calcium concentration of individual coronary calcified plaques as measured by multidetector row computed tomography. Circulation 111:3236–3241

    Article  PubMed  CAS  Google Scholar 

  24. Pou KM, Massaro JM, Hoffmann U, Lieb K, Vasan RS, O'Donnell CJ, Fox CS (2009) Patterns of abdominal fat distribution: the Framingham Heart Study. Diabetes Care 32:481–485

    Article  PubMed  Google Scholar 

  25. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–885

    Article  Google Scholar 

  26. Roberts M, Cootes T, Pacheco E, Adams J (2007) Quantitative vertebral fracture detection on DXA images using shape and appearance models. Acad Radiol 14:1166–1178

    Article  PubMed  Google Scholar 

  27. Black DM, Palermo L, Nevitt MC, Genant HK, Epstein R, San Valentin R, Cummings SR (1995) Comparison of methods for defining prevalent vertebral deformities: the study of osteoporotic fractures. J Bone Miner Res 10(6):890–902

    Article  PubMed  CAS  Google Scholar 

  28. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5(4):262–270

    Article  PubMed  CAS  Google Scholar 

  29. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  30. Fleiss J (1981) The measurement of interrater agreement. Statistical method for rates and proportions. John Wiley and Sons, Inc., New York, pp 211–236

    Google Scholar 

  31. Takeda M, Wu CY, Lang TF, Genant HK (1998) Vertebral fracture assessment using the lateral scoutview of computed tomography in comparison with radiographs. Osteoporos Int 8:197–203

    Article  Google Scholar 

  32. Guglielmi G, Palmieri F, Placentino MG, D'Errico F, Stoppino LP (2009) Assessment of osteoporotic vertebral fractures using specialized workflow software for 6-point morphometry. Eur J Radiol 70:142–148

    Article  PubMed  Google Scholar 

  33. Ferrar L, Jiang G, Eastell R (2001) Short-term precision for morphometric X-ray absorptiometry. Osteoporos Int 12:710–715

    Article  PubMed  CAS  Google Scholar 

  34. Rea JA, Chen MB, Li J, Potts E, Fan B, Blake GM, Steiger P, Smith IG, Genet HK, Fogelman I (1999) Morphometric X-ray absorptiometry and morphometric radiography of the spine: a comparison of analysis precision in normal and osteoporotic subjects. Osteoporos Int 9:536–544

    PubMed  CAS  Google Scholar 

  35. Wu CY, Li J, Jergas M, Genant HK (1995) Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporos Int 5:354–370

    Article  PubMed  CAS  Google Scholar 

  36. Roberts MG, Pacheco EMB, Mohankumar R, Cootes TF, Adams JE (2010) Detection of vertebral fractures in DXA VFA images using statistical models of appearance and a semi-automatic segmentation. Osteoporos Int 21:2037–2046

    Article  PubMed  CAS  Google Scholar 

  37. Woo EK, Mansoubi H, Alyas F (2008) Incidental vertebral fractures on multidetector CT images of the chest: prevalence and recognition. Clin Radiol 63:160–164

    Article  PubMed  CAS  Google Scholar 

  38. Williams AL, Al-Busaidi A, Sparrow PJ, Adams JE, Whitehouse RW (2009) Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur J Radiol 69:179–183

    Article  PubMed  Google Scholar 

Download references


This work was supported by grants from the National Institute for Arthritis, Musculoskeletal, and Skin Diseases (NIAMS) R01AR053986, NIAMS and the National Institute on Aging (NIA) R01AR/AG041398, and by the National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study (NIH/NHLBI Contract N01-HC-25195). We acknowledge the assistance of Peter Steiger, PhD of Optasia Medical.

Conflicts of interest


Author information

Authors and Affiliations


Corresponding author

Correspondence to Y. M. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.M., Demissie, S., Eisenberg, R. et al. Intra-and inter-reader reliability of semi-automated quantitative morphometry measurements and vertebral fracture assessment using lateral scout views from computed tomography. Osteoporos Int 22, 2677–2688 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: