Osteoporosis International

, Volume 22, Issue 6, pp 1873–1883 | Cite as

Construction and validation of a simplified fracture risk assessment tool for Canadian women and men: results from the CaMos and Manitoba cohorts

  • W. D. Leslie
  • C. Berger
  • L. Langsetmo
  • L. M. Lix
  • J. D. Adachi
  • D. A. Hanley
  • G. Ioannidis
  • R. G. Josse
  • C. S. Kovacs
  • T. Towheed
  • S. Kaiser
  • W. P. Olszynski
  • J. C. Prior
  • S. Jamal
  • N. Kreiger
  • D. Goltzman
  • Canadian Multicentre Osteoporosis Study (CaMos) Research Group
Original Article

Abstract

Summary

A procedure for creating a simplified version of fracture risk assessment tool (FRAX®) is described. Calibration, fracture prediction, and concordance were compared with the full FRAX tool using two large, complementary Canadian datasets.

Introduction

The Canadian Association of Radiologists and Osteoporosis Canada (CAROC) system for fracture risk assessment is based upon sex, age, bone mineral density (BMD), prior fragility fracture, and glucocorticoid use. CAROC does not require computer or web access, and categorizes 10-year major osteoporotic fracture risk as low (<10%), moderate (10–20%), or high (>20%).

Methods

Basal CAROC fracture risk tables (by age, sex, and femoral neck BMD) were constructed from Canadian FRAX probabilities for major osteoporotic fractures (adjusted for prevalent clinical risk factors). We assessed categorization and fracture prediction with the updated CAROC system in the CaMos and Manitoba BMD cohorts.

Results

The new CAROC system demonstrated high concordance with the Canadian FRAX tool for risk category in both the CaMos and Manitoba cohorts (89% and 88%). Ten-year fracture outcomes in CaMos and Manitoba BMD cohorts showed good discrimination and calibration for both CAROC (6.1–6.5% in low-risk, 13.5–14.6% in moderate-risk, and 22.3–29.1% in high-risk individuals) and FRAX (6.1–6.6% in low-risk, 14.4–16.1% in moderate-risk, and 23.4–31.0% in high-risk individuals). Reclassification from the CAROC risk category to a different risk category under FRAX occurred in <5% for low-risk, 20–24% for moderate-risk, and 27–30% for high-risk individuals. Reclassified individuals had 10-year fracture outcomes that were still within or close to the original nominal-risk range..

Conclusion

The new CAROC system is well calibrated to the Canadian population and shows a high degree of concordance with the Canadian FRAX tool. The CAROC system provides s a simple alternative when it is not feasible to use the full Canadian FRAX tool.

Keywords

Bone mineral density Canada CAROC Fracture risk prediction FRAX Osteoporosis 

References

  1. 1.
    Kanis JA, Melton LJ III, Christiansen C et al (1994) The diagnosis of osteoporosis [see comments]. J Bone Miner Res 9:1137–41PubMedCrossRefGoogle Scholar
  2. 2.
    Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–89PubMedCrossRefGoogle Scholar
  3. 3.
    Kanis JA, McCloskey EV, Johansson H et al (2008) A reference standard for the description of osteoporosis. Bone 42:467–75PubMedCrossRefGoogle Scholar
  4. 4.
    Siris ES, Chen YT, Abbott TA et al (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164:1108–12PubMedCrossRefGoogle Scholar
  5. 5.
    Cranney A, Jamal SA, Tsang JF et al (2007) Low bone mineral density and fracture burden in postmenopausal women. CMAJ 177:575–80PubMedGoogle Scholar
  6. 6.
    Langsetmo L, Goltzman D, Kovacs CS et al (2009) Repeat low-trauma fractures occur frequently among men and women who have osteopenic BMD. J Bone Miner Res 24:1515–22PubMedCrossRefGoogle Scholar
  7. 7.
    Siminoski K, Leslie WD, Frame H et al (2007) Recommendations for bone mineral density reporting in Canada: a shift to absolute fracture risk assessment. J Clin Densitom 10:120–3PubMedCrossRefGoogle Scholar
  8. 8.
    Kanis JA, Johnell O, Oden A et al (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12:989–95PubMedCrossRefGoogle Scholar
  9. 9.
    Kanis JA, Johnell O, De Laet C et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–82PubMedCrossRefGoogle Scholar
  10. 10.
    Kanis JA, Johansson H, Oden A et al (2004) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19:893–9PubMedCrossRefGoogle Scholar
  11. 11.
    Adachi JD, Olszynski WP, Hanley DA et al (2000) Management of corticosteroid-induced osteoporosis. Semin Arthritis Rheum 29:228–51PubMedCrossRefGoogle Scholar
  12. 12.
    Leslie WD, Tsang JF, Lix LM (2009) Simplified system for absolute fracture risk assessment: clinical validation in Canadian women. J Bone Miner Res 24:353–60PubMedCrossRefGoogle Scholar
  13. 13.
    Leslie WD, Lix LM (2010) Simplified 10-year absolute fracture risk assessment: a comparison of men and women. J Clin Densitom 13:141–6PubMedCrossRefGoogle Scholar
  14. 14.
    Leslie WD, O’Donnell S, Jean S et al (2009) Trends in hip fracture rates in Canada. JAMA 302:883–9PubMedCrossRefGoogle Scholar
  15. 15.
    Kanis JA, Oden A, Johansson H et al (2009) FRAX and its applications to clinical practice. Bone 44:734–43PubMedCrossRefGoogle Scholar
  16. 16.
    Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–46PubMedCrossRefGoogle Scholar
  17. 17.
    Leslie WD, Lix D, Langsetmo L, et al. (2010) Construction of a FRAX model for the assessment of fracture probability in Canada and implications for treatment. Osteoporis Int (in press)Google Scholar
  18. 18.
    Chen P, Krege JH, Adachi JD et al (2009) Vertebral fracture status and the World Health Organization risk factors for predicting osteoporotic fracture risk. J Bone Miner Res 24:495–502PubMedCrossRefGoogle Scholar
  19. 19.
    Kreiger N, Tenenhouse A, Joseph L et al (1999) Research notes: the Canadian Multicentre Osteoporosis Study (CaMos) - background, rationale, methods. Can J Aging 18:376–87CrossRefGoogle Scholar
  20. 20.
    Kanis JA, Johnell O, Oden A et al (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–97PubMedCrossRefGoogle Scholar
  21. 21.
    Berger C, Langsetmo L, Joseph L et al (2009) Association between change in BMD and fragility fracture in women and men. J Bone Miner Res 24:361–70PubMedCrossRefGoogle Scholar
  22. 22.
    Genant HK, Grampp S, Gluer CC et al (1994) Universal standardization for dual x-ray absorptiometry: Patient and phantom cross-calibration results. J Bone Miner Res 9:1503–14PubMedCrossRefGoogle Scholar
  23. 23.
    Roos NP, Shapiro E (1999) Revisiting the manitoba centre for health policy and evaluation and its population-based health information system. Med Care 37:JS10–JS14PubMedCrossRefGoogle Scholar
  24. 24.
    WHO Collaborating Centre for Drug Statistics Methodology (2005) Guidelines for ATC classification and DDD assignment. Norwegian Institute for Public Health, OsloGoogle Scholar
  25. 25.
    Kozyrskyj AL, Mustard CA (1998) Validation of an electronic, population-based prescription database. Ann Pharmacother 32:1152–7PubMedCrossRefGoogle Scholar
  26. 26.
    Leslie WD, Tsang JF, Caetano PA et al (2007) Effectiveness of bone density measurement for predicting osteoporotic fractures in clinical practice. J Clin Endocrinol Metab 92:77–81PubMedCrossRefGoogle Scholar
  27. 27.
    Leslie WD, Metge C (2003) Establishing a regional bone density program: lessons from the Manitoba experience. J Clin Densitom 6:275–82PubMedCrossRefGoogle Scholar
  28. 28.
    Leslie WD, MacWilliam L, Lix L et al (2005) A population-based study of osteoporosis testing and treatment following introduction of a new bone densitometry service. Osteoporos Int 16:773–82PubMedCrossRefGoogle Scholar
  29. 29.
    Leslie WD, Caetano PA, MacWilliam LR et al (2005) Construction and validation of a population-based bone densitometry database. J Clin Densitom 8:25–30PubMedCrossRefGoogle Scholar
  30. 30.
    Leslie WD (2006) The importance of spectrum bias on bone density monitoring in clinical practice. Bone 39:361–8PubMedCrossRefGoogle Scholar
  31. 31.
    Janes H, Pepe MS, Gu W (2008) Assessing the value of risk predictions by using risk stratification tables. Ann Intern Med 149:751–60PubMedGoogle Scholar
  32. 32.
    Siminoski K, Leslie WD, Frame H et al (2005) Recommendations for bone mineral density reporting in Canada. Can Assoc Radiol J 56:178–88PubMedGoogle Scholar
  33. 33.
    Leslie WD, O’Donnell S, Lagace C et al (2009) Population-based Canadian hip fracture rates with international comparisons. Osteoporos Int 21:1317–1322PubMedCrossRefGoogle Scholar
  34. 34.
    Kanis JA, Johnell O, De Laet C et al (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17:1237–44PubMedCrossRefGoogle Scholar
  35. 35.
    Fraser L, Langsetmo L, Berger C et al (2010). Fracture prediction and calibration of a Canadian FRAX tool: a population-based report from CaMos. Osteoporis Int (in press)Google Scholar
  36. 36.
    Leslie WD, Lix LM, Johansson H et al (2010) Independent clinical validation of a Canadian FRAX((R)) tool: Fracture prediction and model calibration. J Bone Miner Res. doi:10.1002/jbmr.123

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2010

Authors and Affiliations

  • W. D. Leslie
    • 1
    • 14
  • C. Berger
    • 2
  • L. Langsetmo
    • 2
  • L. M. Lix
    • 3
  • J. D. Adachi
    • 4
  • D. A. Hanley
    • 5
  • G. Ioannidis
    • 4
  • R. G. Josse
    • 6
  • C. S. Kovacs
    • 7
  • T. Towheed
    • 8
  • S. Kaiser
    • 9
  • W. P. Olszynski
    • 10
  • J. C. Prior
    • 11
  • S. Jamal
    • 6
  • N. Kreiger
    • 3
    • 12
  • D. Goltzman
    • 3
    • 13
  • Canadian Multicentre Osteoporosis Study (CaMos) Research Group
  1. 1.Department of MedicineUniversity of ManitobaWinnipegCanada
  2. 2.CaMos National Coordinating CentreMcGill UniversityMontrealCanada
  3. 3.School of Public HealthUniversity of SaskatchewanSaskatoonCanada
  4. 4.Department of Clinical Epidemiology and BiostatisticsMcMaster UniversityHamiltonCanada
  5. 5.Departments of Medicine and Community Health SciencesUniversity of CalgaryCalgaryCanada
  6. 6.Department of MedicineUniversity of TorontoTorontoCanada
  7. 7.Discipline of MedicineMemorial University, St. John’sNewfoundlandCanada
  8. 8.Department of MedicineQueen’s UniversityKingstonCanada
  9. 9.Department of MedicineDalhousie UniversityHalifaxCanada
  10. 10.Department of MedicineUniversity of SaskatchewanSaskatoonCanada
  11. 11.Department of Medicine and EndocrinologyUniversity of British ColumbiaVancouverCanada
  12. 12.Department of Public Health SciencesUniversity of TorontoTorontoCanada
  13. 13.Department of MedicineMcGill UniversityMontrealCanada
  14. 14.Department of Medicine (C5121)St. Boniface General Hospital, 409 Tache AvenueWinnipegCanada

Personalised recommendations