Abstract
Oestrogen deficiency increases the rate of bone remodelling which, in association with a negative remodelling balance (resorption exceeding formation), results in impaired bone architecture, mass and strength. Current anti-osteoporotic drugs act on bone remodelling by inhibiting bone resorption or by promoting its formation. An alternative therapeutic approach is based on the concept of inducing opposite effects on bone resorption and formation. One therapeutic agent, strontium ranelate, was shown to induce opposite effects on bone resorption and formation in pre-clinical studies and to reduce fracture risk in postmenopausal osteoporotic patients. How strontium ranelate acts to improve bone strength in humans remains a matter of debate, however. This review of the most recent pre-clinical and clinical studies is a critical analysis of strontium ranelate’s action on bone resorption and formation and how it increases bone mass, microarchitecture and strength in postmenopausal osteoporotic women.
Similar content being viewed by others
References
Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115(12):3318–3325
Hauselmann HJ, Rizzoli R (2003) A comprehensive review of treatments for postmenopausal osteoporosis. Osteoporos Int 14(1):2–12
Seeman E (2003) Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int 14(Suppl 3):S2–S8
Marie PJ (2006) Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 18(suppl 1):S11–S15
Baron R, Tsouderos Y (2002) In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol 450(1):11–17
Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42(1):129–138
Takahashi N, Sasaki T, Tsouderos Y, Suda T (2003) S12911-2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res 18(6):1082–1087
Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S et al (2009) The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem 284(1):575–584
Caverzasio J (2008) Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms. Bone 42(6):1131–1136
Fromigue O, Hay E, Barbara A, Petrel C, Traiffort E, Ruat M et al (2009) Calcium sensing receptor-dependent and -independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med 13(8B):2189–2199
Fromigue O, Hay E, Barbara A, Marie PJ (2010) Essential role of nuclear factor of activated T cells (NFAT)-mediated WNT signalling in osteoblast differentiation induced by strontium ranelate. J Biol Chem 285:25251–25258
Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ (1996) The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18(6):517–523
Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM (2007) The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol 74(3):438–447
Atkins GJ, Welldon KJ, Halbout P, Findlay DM (2009) Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int 20(4):653–664
Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157(7):1291–1300
Barbara A, Delannoy P, Denis BG, Marie PJ (2004) Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 53(4):532–537
Choudhary S, Halbout P, Alander C, Raisz L, Pilbeam C (2007) Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: involvement of prostaglandins. J Bone Miner Res 22(7):1002–1010
Zhu LL, Zaidi S, Peng Y, Zhou H, Moonga BS, Blesius A et al (2007) Induction of a program gene expression during osteoblast differentiation with strontium ranelate. Biochem Biophys Res Commun 355(2):307–311
Caudrillier A, Hurtel-Lemaire AS, Wattel A, Cournarie F, Godin C, Petit L et al. (2010) Strontium ranelate decreases RANKL-induced osteoclastic differentiation in vitro: involvement of the calcium sensing receptor. Mol Pharmacol (in press)
Brown EM, Lian JB (2008) New insights in bone biology: unmasking skeletal effects of the extracellular calcium-sensing receptor. Sci Signal 1(35):e40
Chang W, Tu C, Chen TH, Komuves L, Oda Y, Pratt SA et al (1999) Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140(12):5883–5893
Chang W, Tu C, Chen TH, Bikle D, Shoback D (2008) The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal 1(35):ra1
Brown EM (2003) Is the calcium receptor a molecular target for the actions of strontium on bone? Osteoporos Int 14(Suppl 3):S25–S34
Coulombe J, Faure H, Robin B, Ruat M (2004) In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun 323(4):1184–1190
Zhang D, Pan L, Yang LH, He XK, Huang XY, Sun FZ (2005) Strontium promotes calcium oscillations in mouse meiotic oocytes and early embryos through InsP3 receptors, and requires activation of phospholipase and the synergistic action of InsP3. Hum Reprod 20(11):3053–3061
Sienaert I, Missiaen L, De SH, Parys JB, Sipma H, Casteels R (1997) Molecular and functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1, 4, 5-trisphosphate receptor. J Biol Chem 272(41):25899–25906
Mentaverri R, Yano S, Chattopadhyay N, Petit L, Kifor O, Kamel S et al (2006) The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J 20(14):2562–2564
Pi M, Quarles LD (2004) A novel cation-sensing mechanism in osteoblasts is a molecular target for strontium. J Bone Miner Res 19(5):862–869
Delannoy P, Bazot D, Marie PJ (2002) Long-term treatment with strontium ranelate increases vertebral bone mass without deleterious effect in mice. Metabolism 51(7):906–911
Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A (2001) Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone 29(2):176–179
Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P et al (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8(5):607–615
Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int 20(8):1417–1428
Hott M, Deloffre P, Tsouderos Y, Marie PJ (2003) S12911-2 reduces bone loss induced by short-term immobilization in rats. Bone 33(1):115–123
Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19(12):2012–2020
Ammann P, Badoud I, Barraud S, Dayer R, Rizzoli R (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22(9):1419–1425
Geoffroy V, Chappard D, Marty C, Libouban H, Ostertag A, Lalande A et al. (2010) Strontium ranelate decreases the incidence of new caudal vertebral fractures in a growing mouse model with spontaneous fractures by improving bone microarchitecture. Osteoporos Int (in press)
Maimoun L, Brennan TC, Badoud I, Dubois-Ferriere V, Rizzoli R, Ammann P (2010) Strontium ranelate improves implant osseointegration. Bone 46(5):1436–1441
Li Y, Feng G, Gao Y, Luo E, Liu X, Hu J (2009) Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res 28:578–582
Habermann B, Kafchitsas K, Olender G, Augat P, Kurth A (2010) Strontium ranelate enhances callus strength more than PTH 1-34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86(1):82–89
Li YF, Luo E, Feng G, Zhu SS, Li JH, Hu J (2009) Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int (in press)
Peng S, Liu XS, Wang T, Li Z, Zhou G, Luk KD et al (2010) In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells. J Orthop Res 28:1208–1214
Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D et al (2008) Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int 19(9):1331–1341
Marie PJ (2008) Effective doses for strontium ranelate. Osteoporos Int Reply 19(12):1815–1817
Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y et al (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S12911) administration. J Bone Miner Res 11(9):1302–1311
Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K et al (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25(5):968–975
Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C et al (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res 25(4):891–900
Meunier PJ, Roux C, Seemar E, Ortolani S, Badurski JE, Spector TM et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459–468
Reginster JY, Seeman E, De Vernejoul C, Adami S, Compston J, Phenekos C et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90(5):2816–2822
Meunier PJ, Roux C, Ortolani S, az-Curiel M, Compston J, Marquis P et al (2009) Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 20(10):1663–1673
Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML et al (2008) Effects of long-term strontium ranelate treatment on the risk of non-vertebral and vertebral fractures in postmenopausal osteoporosis: results of a 5-year, randomized, placebo-controlled trial. Arthritis Rheum 58:1687–1695
Reginster JY, Bruyere O, Sawicki A, Roces-Varela A, Fardellone P, Roberts A et al (2009) Long-term treatment of postmenopausal osteoporosis with strontium ranelate: results at 8 years. Bone 45(6):1059–1064
Seeman E, Boonen S, Borgstrom F, Vellas B, Aquino JP, Semler J et al (2010) Five years treatment with strontium ranelate reduces vertebral and nonvertebral fractures and increases the number and quality of remaining life-years in women over 80 years of age. Bone 46(4):1038–1042
Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z et al (2006) Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res 21(4):536–542
Recker RR, Marin F, Ish-Shalom S, Moricke R, Hawkins F, Kapetanos G et al (2009) Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res 24(8):1358–1368
Bruyere O, Collette J, Reginster JY (2010) The effects of strontium ranelate on biochemical markers of bone turnover and their relationship with bone mineral density: reply to Stepan et al. Osteoporos Int 0:1–2
Meunier PJ (2004) Postmenopausal osteoporosis and strontium ranelate—reply. N Engl J Med 350(19):2002–2003
Bruyere O, Collette J, Rizzoli R, Decock C, Ortolani S, Cormier C et al (2010) Relationship between 3-month changes in biochemical markers of bone remodelling and changes in bone mineral density and fracture incidence in patients treated with strontium ranelate for 3 years. Osteoporos Int 21(6):1031–1036
Bruyere O, Roux C, Detilleux J, Slosman DO, Spector TD, Fardellone P et al (2007) Relationship between bone mineral density changes and fracture risk reduction in patients treated with strontium ranelate. J Clin Endocrinol Metab 92(8):3076–3081
Bruyere O, Roux C, Badurski J, Isaia G, De Vernejoul MC, Cannata J et al (2007) Relationship between change in femoral neck bone mineral density and hip fracture incidence during treatment with strontium ranelate. Curr Med Res Opin 23(12):3041–3045
Kendler DL, Adachi JD, Josse RG, Slosman DO (2009) Monitoring strontium ranelate therapy in patients with osteoporosis. Osteoporos Int 20(7):1101–1106
Arlot ME, Jiang Y, Genant HK, Zhao J, Burt-Pichat B, Roux JP et al (2008) Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res 23(2):215–222
Rizzoli R, Laroche M, Krieg MA, Frieling I, Thomas T, Delmas P et al (2010) Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int 30:1341–1348
Conflicts of interest
PJ Marie received consultancies, speaking fees or honoraria from Servier and Danone. D. Felsenfeld served as scientific advisor, speaker or scientific study support, and ML Brandi received consultancies, speaking fees or honoraria from MSD, P&G, Eli Lilly, Nycomed, Servier, Amgen and Stroder.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Marie, P.J., Felsenberg, D. & Brandi, M.L. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int 22, 1659–1667 (2011). https://doi.org/10.1007/s00198-010-1369-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00198-010-1369-0