Skip to main content

Advertisement

Log in

Ovariectomy and genes encoding core circadian regulatory proteins in murine bone

  • Short Communication
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study investigated the influence of ovarian hormone deficiency on core circadian regulatory protein (CCRP) in the context of bone loss. Our data suggest that ovarian hormone deficiency disrupts diurnal rhythmicity and CCRP expression in bone. Further studies should determine if chronobiology provides a novel therapeutic target for osteoporosis intervention.

Introduction

CCRP synchronize metabolic activities and display an oscillatory expression profile in murine bone. In vitro studies using bone marrow mesenchymal stromal/stem cells have demonstrated that the CCRP is present and can be regulated within osteoblast progenitors. In vivo studies have shown that the CCRP regulates bone mass via leptin/neuroendocrine pathways. The current study used an ovariectomized murine model to test the hypothesis that ovarian hormone deficiency is associated with either an attenuation and/or temporal phase shift of the CCRP oscillatory expression in bone and that these changes are correlated with the onset of osteoporosis.

Methods

Sham-operated controls and ovariectomized female C57BL/6 mice were euthanized at 4-h intervals 2 weeks post-operatively.

Results

Ovariectomy attenuated the oscillatory expression of CCRP mRNAs in the femur and vertebra relative to the controls and reduced the wheel-running activity profile.

Conclusion

Ovarian hormone deficiency modulates the expression profile of the CCRP with potential impact on bone marrow mesenchymal stem cell lineage commitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    Article  PubMed  CAS  Google Scholar 

  2. Gimble JM, Floyd ZE, Bunnell BA (2009) The 4th dimension and adult stem cells: can timing be everything? J Cell Biochem 107:569–578

    Article  PubMed  CAS  Google Scholar 

  3. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339–5346

    Article  PubMed  CAS  Google Scholar 

  4. Jetten AM, Kurebayashi S, Ueda E (2001) The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Prog Nucleic Acid Res Mol Biol 69:205–247

    Article  PubMed  CAS  Google Scholar 

  5. Horard B, Rayet B, Triqueneaux G, Laudet V, Delaunay F, Vanacker JM (2004) Expression of the orphan nuclear receptor ERRalpha is under circadian regulation in estrogen-responsive tissues. J Mol Endocrinol 33:87–97

    Article  PubMed  CAS  Google Scholar 

  6. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815

    Article  PubMed  CAS  Google Scholar 

  7. Zvonic S, Ptitsyn AA, Kilroy G, Wu X, Conrad SA, Scott LK, Guilak F, Pelled G, Gazit D, Gimble JM (2007) Circadian oscillation of gene expression in murine calvarial bone. J Bone Miner Res 22:357–365

    Article  PubMed  CAS  Google Scholar 

  8. PA GY, Zilberman Y, Pelled G, Gimble JM, Gazit D (2009) Circadian regulation of the osteocalcin promoter: imaging based studies in a transgenic mouse model. J Dent Res 88:45–50

    Article  Google Scholar 

  9. Ozkurt IC, Tetradis S (2003) Parathyroid hormone-induced E4BP4/NFIL3 down-regulates transcription in osteoblasts. J Biol Chem 278:26803–26809

    Article  PubMed  CAS  Google Scholar 

  10. Burris TP (2008) Nuclear hormone receptors for heme: REV-ERBalpha and REV-ERBbeta are ligand-regulated components of the mammalian clock. Mol Endocrinol 22:1509–1520

    Article  PubMed  CAS  Google Scholar 

  11. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266

    Article  PubMed  CAS  Google Scholar 

  12. Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742

    Article  PubMed  CAS  Google Scholar 

  13. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970

    Article  PubMed  CAS  Google Scholar 

  14. Ruiz de Elvira MC, Persaud R, Coen CW (1992) Use of running wheels regulates the effects of the ovaries on circadian rhythms. Physiol Behav 52:277–284

    Article  PubMed  CAS  Google Scholar 

  15. Sutton GM, Perez-Tilve D, Nogueiras R, Fang J, Kim JK, Cone RD, Gimble JM, Tschop MH, Butler AA (2008) The melanocortin-3 receptor is required for entrainment to meal intake. J Neurosci 28:12946–12955

    Article  PubMed  CAS  Google Scholar 

  16. XWX GBC, Evans AE, AE ML, Johnson ML, Molly R, GJ HMR (2007) Food entrainment of circadian gene expression altered in PPARα-/- brown fat and heart. Biochem Biophys Res Commun 360:828–833

    Article  Google Scholar 

  17. Wu X, Yu G, Parks H, Hebert T, Goh BC, Dietrich MA, Pelled G, Izadpanah R, Gazit D, Bunnell BA, Gimble JM (2008) Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone 42:861–870

    Article  PubMed  CAS  Google Scholar 

  18. Wu X, Zvonic S, Floyd ZE, Kilroy G, Goh BC, Hernandez TL, Eckel RH, Mynatt RL, Gimble JM (2007) Induction of circadian gene expression in human subcutaneous adipose-derived stem cells. Obesity (Silver Spring) 15:2560–2570

    Article  CAS  Google Scholar 

  19. Smith BJ, Lerner MR, Bu SY, Lucas EA, Hanas JS, Lightfoot SA, Postier RG, Bronze MS, Brackett DJ (2006) Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone 38:378–386

    Article  PubMed  CAS  Google Scholar 

  20. Newitt DC, Majumdar S, van Rietbergen B, von Ingersleben G, Harris ST, Genant HK, Chesnut C, Garnero P, MacDonald B (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 13:6–17

    Article  PubMed  CAS  Google Scholar 

  21. Bingham C, Arbogast B, Guillaume GC, Lee JK, Halberg F (1982) Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9:397–439

    PubMed  CAS  Google Scholar 

  22. Gimble JM, Floyd ZE (2009) Fat circadian biology. J Appl Physiol 107(5):1629–1637

    Article  PubMed  Google Scholar 

  23. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A 102:12071–12076

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Laura Dallam, Susan Newman, Barry Robert DVM, PhD, and the Genomics and Comparative Biology Cores at PBRC and financial support from the Pennington Biomedical Research Foundation (J.M.G., X.W.) and the Clinical Nutrition Research Unit Center Grant #1P30 DK072476 entitled “Nutritional Programming: Environmental and Molecular Interactions” sponsored by NIDDK (A.A.B., J.M.G., G.Y.).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Smith.

Additional information

Smith, Sutton, Wu, Gimble shared equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(DOCX 14.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, B.J., Sutton, G.M., Wu, X. et al. Ovariectomy and genes encoding core circadian regulatory proteins in murine bone. Osteoporos Int 22, 1633–1639 (2011). https://doi.org/10.1007/s00198-010-1325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1325-z

Keywords

Navigation