Skip to main content

Advertisement

Log in

Gene–gene interaction between CD40 and CD40L reduces bone mineral density and increases osteoporosis risk in women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We have analysed the association of single-nucleotide polymorphisms (SNPs) in CD40 and CD40L genes with bone mineral density (BMD) in our women. Results showed that women with TT genotype for rs1883832 (CD40) and for rs1126535 (CD40L) SNPs displayed reduced BMD and increased risk for osteopenia/osteoporosis. Our data notwithstanding, the results need to be replicated.

Introduction

Recent data have revealed that the CD40/CD40L system can be implicated in bone metabolism regulation. Moreover, we previously demonstrated that rs1883832 in the CD40 gene was significantly associated with BMD and osteoporosis risk. The objective of the present work was to determine whether polymorphisms in CD40 and CD40L genes are associated with BMD and osteoporosis risk.

Methods

We conducted an association study of BMD values with SNPs in CD40 and CD40L genes in a population of 811 women of which 693 and 711 had femoral neck (FN) and lumbar spine (LS) densitometric studies, respectively.

Results

Women with the TT genotype for rs1883832 (CD40) showed a reduction in FN-BMD (P = 0.005) and LS-BMD (P = 0.020) when compared with women with the CC/CT genotype. Moreover, we found that rs1126535 (CD40L) was significantly associated with LS-BMD so that women with the TT genotype displayed lower BMD (P = 0.014) than did women with the CC/CT genotype. Interestingly, we have found a strong interaction between polymorphisms in these genes. Thus, women with the TT genotype for both rs1883832 and rs1126535 SNPs (TT + TT women) showed a lower age-adjusted BMD (Z-score) for FN (P = 0.0007) and LS (0.007) after adjusting by years since menopause, body mass index, smoking and menopausal status, densitometer type, hormone replacement therapy (HRT) use and HRT duration and after making the Bonferroni adjustment for multiple comparisons than did the remaining women. Logistic regression analysis adjusted by these covariates showed that TT + TT women had increased risk for FN (odds ratio (OR) = 2.76; P = 0.006) and LS (OR = 2.39; P = 0.020) osteopenia or osteoporosis than did the other women.

Conclusions

Our results suggest that interaction between genetic variants in the CD40 and CD40L genes exerts a role on BMD regulation. Further studies, which we welcome, are needed to replicate these data in other populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kanis JA, Burlet N, Cooper C et al (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 19(4):399–428

    Article  PubMed  CAS  Google Scholar 

  2. Ralston SH, de Crombrugghe B (2006) Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 20(18):2492–2506

    Article  PubMed  CAS  Google Scholar 

  3. Ralston SH (2002) Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 87(6):2460–2466

    Article  PubMed  CAS  Google Scholar 

  4. Duncan EL, Brown MA (2008) Genetic studies in osteoporosis—the end of the beginning. Arthritis Res Ther 10(5):214

    Article  PubMed  Google Scholar 

  5. Videman T, Levalahti E, Battie MC, Simonen R, Vanninen E, Kaprio J (2007) Heritability of BMD of femoral neck and lumbar spine: a multivariate twin study of Finnish men. J Bone Miner Res 22(9):1455–1462

    Article  PubMed  Google Scholar 

  6. Ralston SH (2005) Genetic determinants of osteoporosis. Curr Opin Rheumatol 17(4):475–479

    Article  PubMed  Google Scholar 

  7. Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116(5):1186–1194

    Article  PubMed  CAS  Google Scholar 

  8. Lorenzo J, Horowitz M, Choi Y (2008) Osteoimmunology: interactions of the bone and immune system. Endocr Rev 29(4):403–440

    Article  PubMed  CAS  Google Scholar 

  9. Arron JR, Choi Y (2000) Bone versus immune system. Nature 408(6812):535–536

    Article  PubMed  CAS  Google Scholar 

  10. Walsh MC, Kim N, Kadono Y et al (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24:33–63

    Article  PubMed  CAS  Google Scholar 

  11. Elgueta R, Benson MJ, de Vries V, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172

    Article  PubMed  CAS  Google Scholar 

  12. Rizvi M, Pathak D, Freedman JE, Chakrabarti S (2008) CD40–CD40 ligand interactions in oxidative stress, inflammation and vascular disease. Trends Mol Med 14(12):530–538

    Article  PubMed  CAS  Google Scholar 

  13. Lopez-Granados E, Temmerman ST, Wu L et al (2007) Osteopenia in X-linked hyper-IgM syndrome reveals a regulatory role for CD40 ligand in osteoclastogenesis. Proc Natl Acad Sci U S A 104(12):5056–5061

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Toraldo G, Li A et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109(9):3839–3848

    Article  PubMed  CAS  Google Scholar 

  15. Pineda B, Laporta P, Hermenegildo C, Cano A, Garcia-Perez MA (2008) A C > T polymorphism located at position −1 of the Kozak sequence of CD40 gene is associated with low bone mass in Spanish postmenopausal women. Osteoporos Int 19(8):1147–1152

    Article  PubMed  CAS  Google Scholar 

  16. Cauley JA, Hochberg MC, Lui LY et al (2007) Long-term risk of incident vertebral fractures. JAMA 298(23):2761–2767

    Article  PubMed  CAS  Google Scholar 

  17. Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046

    Article  PubMed  CAS  Google Scholar 

  18. Pineda B, Laporta P, Cano A, Garcia-Perez MA (2008) The Asn19Lys substitution in the osteoclast inhibitory lectin (OCIL) gene is associated with a reduction of bone mineral density in postmenopausal women. Calcif Tissue Int 82(5):348–353

    Article  PubMed  CAS  Google Scholar 

  19. Lu Y, Fuerst T, Hui S, Genant HK (2001) Standardization of bone mineral density at femoral neck, trochanter and Ward's triangle. Osteoporos Int 12(6):438–444

    Article  PubMed  CAS  Google Scholar 

  20. Hui SL, Gao S, Zhou XH et al (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12(9):1463–1470

    Article  PubMed  CAS  Google Scholar 

  21. Jacobson EM, Concepcion E, Oashi T, Tomer Y (2005) A Graves' disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 146(6):2684–2691

    Article  PubMed  CAS  Google Scholar 

  22. Conde L, Vaquerizas JM, Dopazo H et al (2006) PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res 34(Web Server issue):W621–W625

    Article  PubMed  CAS  Google Scholar 

  23. Yuan HY, Chiou JJ, Tseng WH et al (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 34(Web Server issue):W635–W641

    Article  PubMed  CAS  Google Scholar 

  24. Malarstig A, Lindahl B, Wallentin L, Siegbahn A (2006) Soluble CD40L levels are regulated by the −3459 A > G polymorphism and predict myocardial infarction and the efficacy of antithrombotic treatment in non-ST elevation acute coronary syndrome. Arterioscler Thromb Vasc Biol 26(7):1667–1673

    Article  PubMed  Google Scholar 

  25. Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22(15):1928–1929

    Article  PubMed  CAS  Google Scholar 

  26. Gauderman WJ (2002) Sample size requirements for association studies of gene–gene interaction. Am J Epidemiol 155(5):478–484

    Article  PubMed  Google Scholar 

  27. Ahuja SS, Zhao S, Bellido T, Plotkin LI, Jimenez F, Bonewald LF (2003) CD40 ligand blocks apoptosis induced by tumor necrosis factor alpha, glucocorticoids, and etoposide in osteoblasts and the osteocyte-like cell line murine long bone osteocyte-Y4. Endocrinology 144(5):1761–1769

    Article  PubMed  CAS  Google Scholar 

  28. Schrum LW, Marriott I, Butler BR, Thomas EK, Hudson MC, Bost KL (2003) Functional CD40 expression induced following bacterial infection of mouse and human osteoblasts. Infect Immun 71(3):1209–1216

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Mrs. R. Aliaga and Mrs. E. Calap for their excellent technical assistance. MAG-P is a recipient of a research contract from Fondo de Investigación Sanitaria-Consellería de Sanitat (Generalitat Valenciana).

Grants

This work was supported by grants PI06/154 and PS09/00184 from Fondo de Investigación Sanitaria (FIS, Madrid, Spain), AP-024/07, EVES 045-2007 and AP-077/08 from Conselleria de Sanitat (Generalitat Valenciana), Red HERACLES RD06/0009/0005 from Instituto Carlos III (Ministerio de Ciencia e Innovación; Madrid, Spain) and Fundación Santiago Dexeus Font (Barcelona, Spain).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Á. García-Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pineda, B., Tarín, J.J., Hermenegildo, C. et al. Gene–gene interaction between CD40 and CD40L reduces bone mineral density and increases osteoporosis risk in women. Osteoporos Int 22, 1451–1458 (2011). https://doi.org/10.1007/s00198-010-1324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1324-0

Keywords

Navigation