Skip to main content

Advertisement

Log in

Associations of APOE gene polymorphisms with bone mineral density and fracture risk: a meta-analysis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

To determine the association of the Apolipoprotein E (APOE) E4 gene polymorphism with bone mineral density (BMD) and fractures we conducted a meta-analysis of 17 reports. Despite lower trochanteric and lumbar BMD in APOE4 carriers, there is insufficient evidence to support a consistent association of APOE with bone health.

Introduction

APOE has been studied for its potential role in osteoporosis risk. It is hypothesized that genetic variation at APOE locus, known as E2, E3, and E4, may modulate BMD through its effects on lipoproteins and vitamin K transport. The purpose of this study was to determine the association of the APOE-E4 gene polymorphism with bone-related phenotypes.

Methods

We conducted a meta-analysis that combined newly analyzed individual data from two community-based cohorts, the Framingham Offspring Study (N = 1,495) and the vitamin K clinical trial (N = 377), with 15 other eligible published reports. Bone phenotypes included BMD measurements of the hip (total hip and trochanteric and femoral neck sites) and lumbar spine (from the L2 to L4 vertebrae) and prevalence or incidence of vertebral, hip, and other fractures.

Results

In sex-pooled analyses, APOE4 carriers had a 0.018 g/cm2 lower weighted mean trochanteric BMD than non carriers (p = 0.0002) with no evidence for between-study heterogeneity. A significant association was also detected with lumbar spine BMD (p = 0.006); however, inter-study heterogeneity was observed. Associations with lumbar spine and trochanteric BMD were observed predominantly in women and became less significant in meta-regression (p = 0.055 and 0.01, respectively). There were no consistent associations of APOE4 genotype with BMD at other skeletal sites or with fracture risk.

Conclusions

Based on these findings, there is insufficient evidence to support a strong and consistent association of the APOE genotype with BMD and fracture incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC (2002) Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 155:487–495

    Article  PubMed  Google Scholar 

  2. Schilling AF, Schinke T, Munch C, Gebauer M, Niemeier A, Priemel M, Streichert T, Rueger JM, Amling M (2005) Increased bone formation in mice lacking apolipoprotein E. J Bone Miner Res 20:274–282

    Article  PubMed  CAS  Google Scholar 

  3. Long JR, Liu PY, Liu YJ, Lu Y, Shen H, Zhao LJ, Xiong DH, Deng HW (2004) APOE haplotypes influence bone mineral density in Caucasian males but not females. Calcif Tissue Int 75:299–304

    Article  PubMed  CAS  Google Scholar 

  4. Shiraki M, Shiraki Y, Aoki C, Hosoi T, Inoue S, Kaneki M, Ouchi Y (1997) Association of bone mineral density with apolipoprotein E phenotype. J Bone Miner Res 12:1438–1445

    Article  PubMed  CAS  Google Scholar 

  5. Johnston JM, Cauley JA, Ganguli M (1999) APOE 4 and hip fracture risk in a community-based study of older adults. J Am Geriatr Soc 47:1342–1345

    PubMed  CAS  Google Scholar 

  6. Macdonald HM, McGuigan FE, Lanham-New SA, Fraser WD, Ralston SH, Reid DM (2008) Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E polymorphisms. Am J Clin Nutr 87:1513–1520

    PubMed  CAS  Google Scholar 

  7. Pluijm SM, Dik MG, Jonker C, Deeg DJ, van Kamp GJ, Lips P (2002) Effects of gender and age on the association of apolipoprotein E epsilon4 with bone mineral density, bone turnover and the risk of fractures in older people. Osteoporos Int 13:701–709

    Article  PubMed  CAS  Google Scholar 

  8. von Muhlen DG, Barrett-Connor E, Schneider DL, Morin PA, Parry P (2001) Osteoporosis and apolipoprotein E genotype in older adults: the Rancho Bernardo study. Osteoporos Int 12:332–335

    Article  Google Scholar 

  9. Schoofs MW, van der Klift M, Hofman A, van Duijn CM, Stricker BH, Pols HA, Uitterlinden AG (2004) ApoE gene polymorphisms, BMD, and fracture risk in elderly men and women: the Rotterdam study. J Bone Miner Res 19:1490–1496

    Article  PubMed  CAS  Google Scholar 

  10. Efstathiadou Z, Koukoulis G, Stakias N, Challa A, Tsatsoulis A (2004) Apolipoprotein E polymorphism is not associated with spinal bone mineral density in peri- and postmenopausal Greek women. Maturitas 48:259–264

    Article  PubMed  CAS  Google Scholar 

  11. Stulc T, Ceska R, Horinek A, Stepan J (2000) Bone mineral density in patients with apolipoprotein E type 2/2 and 4/4 genotype. Physiol Res 49:435–439

    PubMed  CAS  Google Scholar 

  12. Cupples LA, D’Agostino RB, Anderson K, Kannel WB (1988) Comparison of baseline and repeated measure covariate techniques in the Framingham Heart Study. Stat Med 7:205–222

    Article  PubMed  CAS  Google Scholar 

  13. Booth SL, Dallal G, Shea MK, Gundberg C, Peterson JW, Dawson-Hughes B (2008) Effect of vitamin K supplementation on bone loss in elderly men and women. J Clin Endocrinol Metab 93:1217–1223

    Article  PubMed  CAS  Google Scholar 

  14. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP (1979) An investigation of coronary heart disease in families. The Framingham Offspring Study. Am J Epidemiol 110:281–290

    PubMed  CAS  Google Scholar 

  15. Araujo AB, Travison TG, Harris SS, Holick MF, Turner AK, McKinlay JB (2007) Race/ethnic differences in bone mineral density in men. Osteoporos Int 18:943–953

    Article  PubMed  CAS  Google Scholar 

  16. McNamara JR, Schaefer EJ (1987) Automated enzymatic standardized lipid analyses for plasma and lipoprotein fractions. Clin Chim Acta 166:1–8

    Article  PubMed  CAS  Google Scholar 

  17. Washburn RA, Ficker JL (1999) Physical Activity Scale for the Elderly (PASE): the relationship with activity measured by a portable accelerometer. J Sports Med Phys Fit 39:336–340

    CAS  Google Scholar 

  18. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  19. Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31:545–548

    PubMed  CAS  Google Scholar 

  20. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  21. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  22. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29:306–309

    Article  PubMed  CAS  Google Scholar 

  23. Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP (2006) Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol 163:300–309

    Article  PubMed  Google Scholar 

  24. Wallace, B., Schmid CH, Lau J, Trikalinos TA. (2009) Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Research Methodol 9:80

    Google Scholar 

  25. Lee SI, Lee SY, Yoo WH (2005) Association of apolipoprotein E polymorphism with bone mineral density in postmenopausal women with rheumatoid arthritis. Rheumatol 44:1067–1068

    Article  CAS  Google Scholar 

  26. Theppeang K, Glass TA, Bandeen-Roche K, Todd AC, Rohde CA, Links JM, Schwartz BS (2008) Associations of bone mineral density and lead levels in blood, tibia, and patella in urban-dwelling women. Environ Health Perspect 116:784–790

    Article  PubMed  CAS  Google Scholar 

  27. Bachner D, Schroder D, Betat N, Ahrens M, Gross G (1999) Apolipoprotein E (ApoE), a Bmp-2 (bone morphogenetic protein) upregulated gene in mesenchymal progenitors (C3H10T1/2), is highly expressed in murine embryonic development. Biofactors 9:11–17

    Article  PubMed  CAS  Google Scholar 

  28. Hirasawa H, Tanaka S, Sakai A, Tsutsui M, Shimokawa H, Miyata H, Moriwaki S, Niida S, Ito M, Nakamura T (2007) ApoE gene deficiency enhances the reduction of bone formation induced by a high-fat diet through the stimulation of p53-mediated apoptosis in osteoblastic cells. J Bone Miner Res 22:1020–1030

    Article  PubMed  CAS  Google Scholar 

  29. Wilson PW, Schaefer EJ, Larson MG, Ordovas JM (1996) Apolipoprotein E alleles and risk of coronary disease. a meta-analysis. Arterioscler Thromb Vasc Biol 16:1250–1255

    PubMed  CAS  Google Scholar 

  30. Bagger YZ, Rasmussen HB, Alexandersen P, Werge T, Christiansen C, Tanko LB (2007) Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int 18:505–512

    Article  PubMed  CAS  Google Scholar 

  31. Szulc P, Samelson EJ, Kiel DP, Delmas PD (2009) Increased bone resorption is associated with increased risk of cardiovascular events in men—the MINOS Study. J Bone Miner Res 24(12):2023–2031

    Article  PubMed  CAS  Google Scholar 

  32. Parhami F, Garfinkel A, Demer LL (2000) Role of lipids in osteoporosis. Arterioscler Thromb Vasc Biol 20:2346–2348

    PubMed  CAS  Google Scholar 

  33. Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, Berliner JA, Demer LL (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 17:680–687

    PubMed  CAS  Google Scholar 

  34. Kohlmeier M, Salomon A, Saupe J, Shearer MJ (1996) Transport of vitamin K to bone in humans. J Nutr 126:1192S–1196S

    PubMed  CAS  Google Scholar 

  35. Knapen MH, Hamulyak K, Vermeer C (1989) The effect of vitamin K supplementation on circulating osteocalcin (bone Gla protein) and urinary calcium excretion. Ann Intern Med 111:1001–1005

    PubMed  CAS  Google Scholar 

  36. Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG (2009) Twenty bone mineral density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206

    Article  PubMed  CAS  Google Scholar 

  37. Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Zillikens MC, Wilson SG, Mullin BH, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra BA, Pols HA, Sigurdsson G, Thorsteinsdottir U, Soranzo N, Williams FM, Zhou Y, Ralston SH, Thorleifsson G, van Duijn CM, Kiel DP, Stefansson K, Uitterlinden AG, Ioannidis JP, Spector TD (2009) Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 151:528–537

    PubMed  Google Scholar 

  38. Chan AW, Hrobjartsson A, Haahr MT, Gotzsche PC, Altman DG (2004) Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA 291:2457–2465

    Article  PubMed  CAS  Google Scholar 

  39. Yerges, L.M., Klei, L., Cauley, J.A., Roeder, K., Kammerer, C.M., Ensrud, K.E., Nestlerode, C.S., Lewis, C., Lang, T.F., Barrett-Connor, E., Moffett, S.P., Hoffman, A.R., Ferrell, R.E., Orwoll, E.S., Zmuda, J.M. (2010) Candidate gene analysis of femoral neck trabecular and cortical volumetric bone mineral density in older men. J Bone Miner Res 25:330–338

    Google Scholar 

  40. Yerges LM, Klei L, Cauley JA, Roeder K, Kammerer CM, Moffett SP, Ensrud KE, Nestlerode CS, Marshall LM, Hoffman AR, Lewis C, Lang TF, Barrett-Connor E, Ferrell RE, Orwoll ES, Zmuda JM (2009) A high-density association study of 383 candidate genes for volumetric bone density at the femoral neck and lumbar spine among older men. J Bone Miner Res 24:2039–2049

    Article  PubMed  CAS  Google Scholar 

  41. Eastell R (2003) Pathogenesis of postmenopausal osteoporosis. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, pp 314–316

    Google Scholar 

  42. Rochira V, Balestrieri A, Madeo B, Zirilli L, Granata AR, Carani C (2006) Osteoporosis and male age-related hypogonadism: role of sex steroids on bone (patho)physiology. Eur J Endocrinol 154:175–185

    Article  PubMed  CAS  Google Scholar 

  43. Kohlmeier M, Saupe J, Schaefer K, Asmus G (1998) Bone fracture history and prospective bone fracture risk of hemodialysis patients are related to apolipoprotein E genotype. Calcif Tissue Int 62:278–281

    Article  PubMed  CAS  Google Scholar 

  44. Weisgraber KH, Mahley RW (1996) Human apolipoprotein E: the Alzheimer’s disease connection. FASEB J 10:1485–1494

    PubMed  CAS  Google Scholar 

  45. Contois JH, Anamani DE, Tsongalis GJ (1996) The underlying molecular mechanism of apolipoprotein E polymorphism: relationships to lipid disorders, cardiovascular disease, and Alzheimer’s disease. Clin Lab Med 16:105–123

    PubMed  CAS  Google Scholar 

  46. Bersano A, Ballabio E, Bresolin N, Candelise L (2008) Genetic polymorphisms for the study of multifactorial stroke. Hum Mutat 29:776–795

    Article  PubMed  CAS  Google Scholar 

  47. Bauer DC, Mundy GR, Jamal SA, Black DM, Cauley JA, Ensrud KE, van der Klift M, Pols HA (2004) Use of statins and fracture: results of 4 prospective studies and cumulative meta-analysis of observational studies and controlled trials. Arch Intern Med 164:146–152

    Article  PubMed  CAS  Google Scholar 

  48. Greenow K, Pearce NJ, Ramji DP (2005) The key role of apolipoprotein E in atherosclerosis. J Mol Med 83:329–342

    Article  PubMed  CAS  Google Scholar 

  49. Langdahl BL, Uitterlinden AG, Ralston SH, Trikalinos TA, Balcells S, Brandi ML, Scollen S, Lips P, Lorenc R, Obermayer-Pietsch B, Reid DM, Armas JB, Arp PP, Bassiti A, Bustamante M, Husted LB, Carey AH, Perez Cano R, Dobnig H, Dunning AM, Fahrleitner-Pammer A, Falchetti A, Karczmarewicz E, Kruk M, van Leeuwen JP, Masi L, van Meurs JB, Mangion J, McGuigan FE, Mellibovsky L, Mosekilde L, Nogues X, Pols HA, Reeve J, Renner W, Rivadeneira F, van Schoor NM, Ioannidis JP (2008) Large-scale analysis of association between polymorphisms in the transforming growth factor beta 1 gene (TGFB1) and osteoporosis: the GENOMOS study. Bone 42:969–981

    Article  PubMed  CAS  Google Scholar 

  50. van Meurs JB, Trikalinos TA, Ralston SH, Balcells S, Brandi ML, Brixen K, Kiel DP, Langdahl BL, Lips P, Ljunggren O, Lorenc R, Obermayer-Pietsch B, Ohlsson C, Pettersson U, Reid DM, Rousseau F, Scollen S, Van Hul W, Agueda L, Akesson K, Benevolenskaya LI, Ferrari SL, Hallmans G, Hofman A, Husted LB, Kruk M, Kaptoge S, Karasik D, Karlsson MK, Lorentzon M, Masi L, McGuigan FE, Mellstrom D, Mosekilde L, Nogues X, Pols HA, Reeve J, Renner W, Rivadeneira F, van Schoor NM, Weber K, Ioannidis JP, Uitterlinden AG (2008) Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 299:1277–1290

    Article  PubMed  Google Scholar 

  51. Heikkinen AM, Kroger H, Niskanen L, Komulainen MH, Ryynanen M, Parviainen MT, Tuppurainen MT, Honkanen R, Saarikoski S (2000) Does apolipoprotein E genotype relate to BMD and bone markers in postmenopausal women? Maturitas 34:33–41

    Article  PubMed  CAS  Google Scholar 

  52. Booth SL, Tucker KL, Chen H, Hannan MT, Gagnon DR, Cupples LA, Wilson PW, Ordovas J, Schaefer EJ, Dawson-Hughes B, Kiel DP (2000) Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 71:1201–1208

    PubMed  CAS  Google Scholar 

  53. Cauley JA, Zmuda JM, Yaffe K, Kuller LH, Ferrell RE, Wisniewski SR, Cummings SR (1999) Apolipoprotein E polymorphism: a new genetic marker of hip fracture risk—the study of osteoporotic fractures. J Bone Miner Res 14:1175–1181

    Article  PubMed  CAS  Google Scholar 

  54. Dick IM, Devine A, Marangou A, Dhaliwal SS, Laws S, Martins RN, Prince RL (2002) Apolipoprotein E4 is associated with reduced calcaneal quantitative ultrasound measurements and bone mineral density in elderly women. Bone 31:497–502

    Article  PubMed  CAS  Google Scholar 

  55. Gerdes LU, Vestergaard P, Hermann AP, Mosekilde L (2001) Regional and hormone-dependent effects of apolipoprotein E genotype on changes in bone mineral in perimenopausal women. J Bone Miner Res 16:1906–1916

    Article  PubMed  CAS  Google Scholar 

  56. Salamone LM, Cauley JA, Zmuda J, Pasagian-Macaulay A, Epstein RS, Ferrell RE, Black DM, Kuller LH (2000) Apolipoprotein E gene polymorphism and bone loss: estrogen status modifies the influence of apolipoprotein E on bone loss. J Bone Miner Res 15:308–314

    Article  PubMed  CAS  Google Scholar 

  57. Zajickova K, Zofkova I, Hill M, Horinek A, Novakova A (2003) Apolipoprotein E 4 allele is associated with low bone density in postmenopausal women. J Endocrinol Invest 26:312–315

    PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Peter.

Additional information

Supported by the US Department of Agriculture, Agricultural Research Service under Cooperative Agreement No. 58-1950-7-707, National Institutes of Health (AG14759, HL69272, HL54776 and T32-DK62032), National Institute of Arthritis Musculoskeletal and Skin Diseases and the National Institute on Aging (R01 AR/AG 41398), the Framingham Heart Study of the NIH-NHLBI (Contract No. N01-HC-25195) and the Japanese Ministry of Education, Culture, Sports and Technology (MY). Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the US Department of Agriculture.

Electronic supplementary material

Figure S1

quorum flow chart of literature review (DOC 249 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peter, I., Crosier, M.D., Yoshida, M. et al. Associations of APOE gene polymorphisms with bone mineral density and fracture risk: a meta-analysis. Osteoporos Int 22, 1199–1209 (2011). https://doi.org/10.1007/s00198-010-1311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1311-5

Keywords

Navigation