Skip to main content

Advertisement

Log in

Serum insulin-like growth factor-I is a marker for assessing the severity of vertebral fractures in postmenopausal women with type 2 diabetes mellitus

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Although previous studies indicated that serum insulin-like growth factor-I (IGF-I) was inversely associated with the presence of vertebral fractures (VFs), little is known whether serum IGF-I is associated with multiple VFs. We report that serum IGF-I could be clinically useful for assessing the severity of VFs in type 2 diabetic postmenopausal women.

Introduction

The number of VFs is associated with the mobility and mortality of the elderly people. Although serum IGF-I is inversely associated with the presence of VFs, little is known about the relationship between serum IGF-I and multiple VFs.

Methods

In this cross-sectional study, we recruited 479 men and 334 postmenopausal women with type 2 diabetes mellitus and measured serum IGF-I, bone mineral density, and bone turnover markers. Lateral X-ray films of the thoracic and lumbar spine were taken to diagnose the VF.

Results

In postmenopausal women, serum IGF-I level was decreased when the number of VFs was increased [no VFs; 138 ± 51 ng/ml (mean ± SD) vs. one VF; 119 ± 42 (p = 0.006), two VFs; 103 ± 39 (p = 0.002), and three and more VFs; 91 ± 40 (p < 0.001)]. Multiple logistic regression analysis adjusted for age, duration of diabetes, body mass index, serum creatinine, and HbA1c showed that serum IGF-I level was inversely associated with the presence of one VF [odds ratio (OR) = 0.67, p = 0.029], two VFs (OR = 0.40, p = 0.017), as well as three and more VFs (OR = 0.27, p = 0.005). These associations were still significant after the additional adjustment for BMD at the lumbar spine. In contrast, no significant association of serum IGF-I level with VFs was found in men.

Conclusions

Serum IGF-I level was inversely associated with the number of prevalent VFs in postmenopausal women with type 2 diabetes, suggesting that serum IGF-I could be clinically useful for assessing the severity of VFs in the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johansson AG, Lindh E, Ljunghall S (1992) Insulin-like growth factor I stimulates bone turnover in osteoporosis. Lancet 339:1619

    Article  PubMed  CAS  Google Scholar 

  2. Schwander JC, Hauri C, Zapf J, Froesch ER (1983) Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology 113:297–305

    Article  PubMed  CAS  Google Scholar 

  3. Spencer EM, Liu CC, Si EC, Howard GA (1991) In vivo actions of insulin-like growth factor-I (IGF-I) on bone formation and resorption in rats. Bone 12:21–26

    Article  PubMed  CAS  Google Scholar 

  4. Zhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC, Malluche H, Zhao G, Rosen CJ, Efstratiadis A, Clemens TL (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals and essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277:44005–44012

    Article  PubMed  CAS  Google Scholar 

  5. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-I directly regulate bone growth and density. J Clin Invest 110:771–781

    PubMed  CAS  Google Scholar 

  6. Sugimoto T, Nishiyama K, Kuribayashi F, Chihara K (1997) Serum levels of insulin-like growth factor (IGF) I, IGF-binding protein (IGFBP)-2, and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res 12:1272–1279

    Article  PubMed  CAS  Google Scholar 

  7. Yamaguchi T, Kanatani M, Yamauchi M, Kaji H, Sugishita T, Baylink DJ, Mohan S, Chihara K, Sugimoto T (2006) Serum levels of insulin-like growth factor (IGF); IGF-binding proteins-3, -4, and -5; and their relationships to bone mineral density and the risk of vertebral fractures in postmenopausal women. Calcif Tissue Int 78:18–24

    Article  PubMed  CAS  Google Scholar 

  8. Ljunghall S, Johanssn AG, Burman P, Kampe O, Lindh E, Karlsson FA (1992) Low plasma levels of insulin-like growth factor 1 (IGF-1) in male patients with idiopathic osteoporosis. J Intern Med 232:59–64

    Article  PubMed  CAS  Google Scholar 

  9. Kurland ES, Rosen CJ, Cosman F, McMahon D, Chan F, Shane E, Lindsay R, Dempster D, Bilezikian JP (1997) Insulin-like growth factor-I in men with idiopathic osteoporosis. J Clin Endocrinol Metab 82:2799–2805

    Article  PubMed  CAS  Google Scholar 

  10. Barrett-Connor E, Holbrook TL (1992) Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. JAMA 268:3333–3337

    Article  PubMed  CAS  Google Scholar 

  11. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444

    Article  PubMed  CAS  Google Scholar 

  12. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of bone mineral density or diabetic complications. J Bone Miner Res 24:702–709

    Article  PubMed  CAS  Google Scholar 

  13. Thrailkill KM (2000) Insulin-like growth factor-I in diabetes mellitus: its physiology, metabolic effects, and potential clinical utility. Diab Technol Ther 2:69–80

    Article  CAS  Google Scholar 

  14. Ahmad T, Ugarph-Morawski A, Lewitt MS, Li J, Saaf M, Brismar K (2008) Diabetic osteopathy and the IGF system in the Goto-Kakizaki rat. Growth Horm IGF Res 18:404–411

    Article  PubMed  CAS  Google Scholar 

  15. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T (2007) Serum insulin-like growth factor-I is associated with the presence of vertebral fractures in postmonopausal women with type 2 diabetes mellitus. Osteoporos Int 18:1675–1681

    Article  PubMed  CAS  Google Scholar 

  16. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto Y (2009) Serum osteocalcin/bone-specific alkaline phosphatase ratio is a predictor for the presence of vertebral fractures in men with type 2 diabetes. Calcif Tissue Int 85:228–234

    Article  PubMed  CAS  Google Scholar 

  17. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Bonhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:302–323

    Article  Google Scholar 

  18. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women an observational study. Lancet 353:878–882

    Article  PubMed  CAS  Google Scholar 

  19. Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561

    Article  PubMed  CAS  Google Scholar 

  20. Fechtenbaum J, Cropet C, Kolta S, Horlait S, Orcel P, Roux C (2005) The severity of vertebral fractures and health-related quality of life in osteoporotic postmenopausal women. Osteoporos Int 16:2175–2179

    Article  PubMed  CAS  Google Scholar 

  21. von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106:273–278

    Article  PubMed  Google Scholar 

  22. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11:984–996

    Article  PubMed  CAS  Google Scholar 

  23. Ueland T (2004) Bone metabolism in relation to alterations in systemic growth hormone. Growth Horm IGF Res 14:404–417

    PubMed  CAS  Google Scholar 

  24. McCarthy TL, Centrella M, Canalis E (1989) Insulin-like growth factor (IGF) and bone. Connect Tissue Res 20:277–282

    Article  PubMed  CAS  Google Scholar 

  25. Mohan S (1993) Insulin-like growth factor binding proteins in bone cell regulation. Growth Regul 3:67–70

    PubMed  CAS  Google Scholar 

  26. Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523

    Article  PubMed  CAS  Google Scholar 

  27. Cappola AR, Bandeen-Roche K, Wand GS, Volpato S, Fried LP (2001) Association of IGF-I levels with muscle strength and mobility in older women. J Clin Endocrinol Metab 86:4139–4146

    Article  PubMed  CAS  Google Scholar 

  28. Macdonald JH, Evans SF, Davie MWJ, Sharp CA (2007) Muscle mass deficits are associated with bone mineral density in men with idiopathic vertebral fracture. Osteoporos Int 18:1371–1378

    Article  PubMed  CAS  Google Scholar 

  29. Center JR, Nguyen TV, Sambrook PN, Eisman JA (2000) Hormonal and biochemical parameters and osteoporotic fractures in elderly men. J Bone Miner Res 15:1405–1411

    Article  PubMed  CAS  Google Scholar 

  30. Rivadeneira F, Houwing-Duistermaat JJ, Beck TJ, Janssen JA, Hofman A, Pols HA, Van Duijn CM, Uitterlinden AG (2004) The influence of an insulin-like growth factor I gene promoter polymorphism on hip bone geometry and the risk of nonvertebral fracture in the elderly: the Rotterdam Study. J Bone Miner Res 19:1280–1290

    Article  PubMed  CAS  Google Scholar 

  31. Bikle D, Majumdar S, Laib A, Powell-Braxton L, Rosen C, Beamer W, Nauman E, Leary C, Halloran B (2001) The skeletal structure of insulin-like growth factor I-deficient mice. J Bone Miner Res 16:2320–2329

    Article  PubMed  CAS  Google Scholar 

  32. Sjogren K, Sheng M, Moverare S, Liu JL, Wallenius K, Tornell J, Isaksson O, Jansson JO, Mohan S, Ohlsson C (2002) Effects of liver-derived insulin-like growth factor I on bone metabolism in mice. J Bone Miner Res 17:1977–1987

    Article  PubMed  CAS  Google Scholar 

  33. Daughaday WH, Phillips LS, Mueller MC (1976) The effects of insulin and growth hormone on the release of somatomedin by the isolated rat liver. Endocrinology 98:1214–1219

    Article  PubMed  CAS  Google Scholar 

  34. Scott CD, Baxter RC (1986) Production of insulin-like growth factor I and its binding protein in rat hepatocytes cultured from diabetic and insulin-treated diabetic rats. Endocrinology 119:2346–2352

    Article  PubMed  CAS  Google Scholar 

  35. Torrens JI, Skurnick J, Davidow AL, Korenman SG, Santoro N, Soto-Greene M, Lasser N, Weiss G, Study of Women’s Health Across the Nation (SWAN) (2004) Ethnic differences in insulin sensitivity and beta-cell function in premenopaulsa or early perimenopausal women without diabetes: the Study of Women’s Health Across the Nation (SWAN). Diab Care 27:354–361

    Article  Google Scholar 

  36. Vestergaad P, Hermann AP, Orskov H, Mosekilde L (1999) Effect of sex hormone replacement on the insulin-like growth factor system and bone mineral: a cross-sectional and longitudinal study in 595 perimenopausal women participating in the Danish Osteoporosis Prevention Study. J Clin Endocrinol Metab 84:2286–2290

    Article  Google Scholar 

  37. Weiss EP, Shah K, Fontana L, Lambert CP, Holloszy JO, Villareal DT (2009) Dehydroepiandrosterone replacement therapy in older adults: 1- and 2-y effects on bone. Am J Clin Nutr 89:1459–1467

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kanazawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanazawa, I., Yamaguchi, T. & Sugimoto, T. Serum insulin-like growth factor-I is a marker for assessing the severity of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos Int 22, 1191–1198 (2011). https://doi.org/10.1007/s00198-010-1310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1310-6

Keywords

Navigation