Osteoporosis International

, Volume 22, Issue 4, pp 1123–1131 | Cite as

Reliability of vertebral fracture assessment using multidetector CT lateral scout views: the Framingham Osteoporosis Study

  • E. J. Samelson
  • B. A. Christiansen
  • S. Demissie
  • K. E. Broe
  • Y. Zhou
  • C. A. Meng
  • W. Yu
  • X. Cheng
  • C. J. O’Donnell
  • U. Hoffmann
  • H. K. Genant
  • D. P. Kiel
  • M. L. Bouxsein
Original Article



Two radiologists evaluated images of the spine from computed tomography (CT) scans on two occasions to diagnose vertebral fracture in 100 individuals. Agreement was fair to good for mild fractures, and agreement was good to excellent for more severe fractures. CT scout views are useful to assess vertebral fracture.


We investigated inter-reader agreement between two radiologists and intra-reader agreement between duplicate readings for each radiologist, in assessment of vertebral fracture using a semi-quantitative method from lateral scout views obtained by CT.


Participants included 50 women and 50 men (age 50-87 years, mean 70 years) in the Framingham Study. T4-L4 vertebrae were assessed independently by two radiologists on two occasions using a semi-quantitative scale as normal, mild, moderate, or severe fracture.


Vertebra-specific prevalence of grade ≥1 (mild) fracture ranged from 3% to 5%. We found fair (κ = 56-59%) inter-reader agreement for grade ≥1 vertebral fractures and good (κ = 68-72%) inter-reader agreement for grade ≥2 fractures. Intra-reader agreement for grade ≥1 vertebral fracture was fair (κ = 55%) for one reader and excellent for another reader (κ = 77%), whereas intra-reader agreement for grade ≥2 vertebral fracture was excellent for both readers (κ = 76% and 98%). Thoracic vertebrae were more difficult to evaluate than the lumbar region, and agreement was lowest (inter-reader κ = 43%) for fracture at the upper (T4-T9) thoracic levels and highest (inter-reader κ = 76-78%) for the lumbar spine (L1-L4).


Based on a semi-quantitative method to classify vertebral fractures using CT scout views, agreement within and between readers was fair to good, with the greatest source of variation occurring for fractures of mild severity and for the upper thoracic region. Agreement was good to excellent for fractures of at least moderate severity. Lateral CT scout views can be useful in clinical research settings to assess vertebral fracture.


Computed tomography Lateral scout Reliability Scoutviews Semiquantitative Vertebral fracture 


  1. 1.
    (2004) Bone health and osteoporosis: a report of the surgeon general. In. US Department of Health and Human Services, Office of the Surgeon General, Rockville, MDGoogle Scholar
  2. 2.
    Melton LJ 3rd, Lane AW, Cooper C, Eastell R, O'Fallon WM, Riggs BL (1993) Prevalence and incidence of vertebral deformities. Osteoporos Int 3:113–119CrossRefGoogle Scholar
  3. 3.
    Davies KM, Stegman MR, Heaney RP, Recker RR (1996) Prevalence and severity of vertebral fracture: the Saunders County Bone Quality Study. Osteoporos Int 6:160–165PubMedCrossRefGoogle Scholar
  4. 4.
    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656PubMedGoogle Scholar
  5. 5.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733PubMedCrossRefGoogle Scholar
  6. 6.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 22:465–475PubMedCrossRefGoogle Scholar
  7. 7.
    Edmond SL, Kiel DP, Samelson EJ, Kelly-Hayes M, Felson DT (2005) Vertebral deformity, back symptoms, and functional limitations among older women: the Framingham Study. Osteoporos Int 16:1086–1095PubMedCrossRefGoogle Scholar
  8. 8.
    Melton LJ 3rd (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141PubMedCrossRefGoogle Scholar
  9. 9.
    Oleksik A, Lips P, Dawson A, Minshall ME, Shen W, Cooper C, Kanis J (2000) Health-related quality of life in postmenopausal women with low BMD with or without prevalent vertebral fractures. J Bone Miner Res 15:1384–1392PubMedCrossRefGoogle Scholar
  10. 10.
    Cauley JA, Hochberg MC, Lui LY, Palermo L, Ensrud KE, Hillier TA, Nevitt MC, Cummings SR (2007) Long-term risk of incident vertebral fractures. Jama 298:2761–2767PubMedCrossRefGoogle Scholar
  11. 11.
    Lau E, Ong K, Kurtz S, Schmier J, Edidin A (2008) Mortality following the diagnosis of a vertebral compression fracture in the Medicare population. J Bone Joint Surg Am 90:1479–1486PubMedCrossRefGoogle Scholar
  12. 12.
    Hasserius R, Karlsson MK, Jonsson B, Redlund-Johnell I, Johnell O (2005) Long-term morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly—a 12- and 22-year follow-up of 257 patients. Calcif Tissue Int 76:235–242PubMedCrossRefGoogle Scholar
  13. 13.
    Freedman BA, Potter BK, Nesti LJ, Giuliani JR, Hampton C, Kuklo TR (2008) Osteoporosis and vertebral compression fractures—continued missed opportunities. Spine J 8:756–762PubMedCrossRefGoogle Scholar
  14. 14.
    Simon M (2002) Recognition of osteoporosis since 1997. Am J Public Health 92:1707PubMedCrossRefGoogle Scholar
  15. 15.
    Siris ES, Bilezikian JP, Rubin MR, Black DM, Bockman RS, Bone HG, Hochberg MC, McClung MR, Schnitzer TJ (2003) Pins and plaster aren't enough: a call for the evaluation and treatment of patients with osteoporotic fractures. J Clin Endocrinol Metab 88:3482–3486PubMedCrossRefGoogle Scholar
  16. 16.
    Black DM, Palermo L, Nevitt MC, Genant HK, Epstein R, San Valentin R, Cummings SR (1995) Comparison of methods for defining prevalent vertebral deformities: the study of osteoporotic fractures. J Bone Miner Res 10:890–902PubMedCrossRefGoogle Scholar
  17. 17.
    Ferrar L, Jiang G, Schousboe JT, DeBold CR, Eastell R (2008) Algorithm-based qualitative and semiquantitative identification of prevalent vertebral fracture: agreement between different readers, imaging modalities, and diagnostic approaches. J Bone Miner Res 23:417–424PubMedCrossRefGoogle Scholar
  18. 18.
    Fuerst T, Wu C, Genant HK, von Ingersleben G, Chen Y, Johnston C, Econs MJ, Binkley N, Vokes TJ, Crans G, Mitlak BH (2009) Evaluation of vertebral fracture assessment by dual X-ray absorptiometry in a multicenter setting. Osteoporos Int 20:1199–1205PubMedCrossRefGoogle Scholar
  19. 19.
    Damiano J, Kolta S, Porcher R, Tournoux C, Dougados M, Roux C (2006) Diagnosis of vertebral fractures by vertebral fracture assessment. J Clin Densitom 9:66–71PubMedCrossRefGoogle Scholar
  20. 20.
    Chapurlat RD, Duboeuf F, Marion-Audibert HO, Kalpakcioglu B, Mitlak BH, Delmas PD (2006) Effectiveness of instant vertebral assessment to detect prevalent vertebral fracture. Osteoporos Int 17:1189–1195PubMedCrossRefGoogle Scholar
  21. 21.
    Gilsanz V, Loro ML, Roe TF, Sayre J, Gilsanz R, Schulz EE (1995) Vertebral size in elderly women with osteoporosis. Mechanical implications and relationship to fractures. J Clin Invest 95:2332–2337PubMedCrossRefGoogle Scholar
  22. 22.
    Takada M, Wu CY, Lang TF, Genant HK (1998) Vertebral fracture assessment using the lateral scoutview of computed tomography in comparison with radiographs. Osteoporos Int 8:197–203PubMedCrossRefGoogle Scholar
  23. 23.
    Schousboe JT, Debold CR (2006) Reliability and accuracy of vertebral fracture assessment with densitometry compared to radiography in clinical practice. Osteoporos Int 17:281–289PubMedCrossRefGoogle Scholar
  24. 24.
    Jiang G, Eastell R, Barrington NA, Ferrar L (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15:887–896PubMedCrossRefGoogle Scholar
  25. 25.
    Szulc P, Munoz F, Marchand F, Sornay-Rendu E, Delmas PD (2003) Similar prevalence of vertebral fractures despite different approaches to define reference data. Bone 32:441–448PubMedCrossRefGoogle Scholar
  26. 26.
    Grados F, Roux C, de Vernejoul MC, Utard G, Sebert JL, Fardellone P (2001) Comparison of four morphometric definitions and a semiquantitative consensus reading for assessing prevalent vertebral fractures. Osteoporos Int 12:716–722PubMedCrossRefGoogle Scholar
  27. 27.
    Rea JA, Chen MB, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Morphometric X-ray absorptiometry and morphometric radiography of the spine: a comparison of prevalent vertebral deformity identification. J Bone Miner Res 15:564–574PubMedCrossRefGoogle Scholar
  28. 28.
    Leidig-Bruckner G, Genant HK, Minne HW, Storm T, Thamsborg G, Bruckner T, Sauer P, Schilling T, Soerensen OH, Ziegler R (1994) Comparison of a semiquantitative and a quantitative method for assessing vertebral fractures in osteoporosis. Osteoporos Int 4:154–161PubMedCrossRefGoogle Scholar
  29. 29.
    Moselewski F, O'Donnell CJ, Achenbach S, Ferencik M, Massaro J, Nguyen A, Cury RC, Abbara S, Jang IK, Brady TJ, Hoffmann U (2005) Calcium concentration of individual coronary calcified plaques as measured by multidetector row computed tomography. Circulation 111:3236–3241PubMedCrossRefGoogle Scholar
  30. 30.
    Dawber TR, Meadors GF, Moore FE (1951) Epidemiological approaches to heart disease: the Framingham Study. Am J Publ Health 41:279–286CrossRefGoogle Scholar
  31. 31.
    Feinleib M, Kannel WB, Garrison RJ, McNamara PM, Castelli WP (1975) The Framingham Offspring Study. Design and preliminary data. Prev Med 4:518–525PubMedCrossRefGoogle Scholar
  32. 32.
    Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, D'Agostino RB Sr, Fox CS, Larson MG, Murabito JM, O'Donnell CJ, Vasan RS, Wolf PA, Levy D (2007) The Third Generation Cohort Of The National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol 165:1328–1335PubMedCrossRefGoogle Scholar
  33. 33.
    Pou KM, Massaro JM, Hoffmann U, Lieb K, Vasan RS, O'Donnell CJ, Fox CS (2009) Patterns of abdominal fat distribution: the Framingham Heart Study. Diab Care 32:481–485CrossRefGoogle Scholar
  34. 34.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148PubMedCrossRefGoogle Scholar
  35. 35.
    Hoffmann U, Massaro JM, Fox CS, Manders E, O'Donnell CJ (2008) Defining normal distributions of coronary artery calcium in women and men (from the Framingham Heart Study). Am J Cardiol 102:1136–1141, 1141 e1131PubMedCrossRefGoogle Scholar
  36. 36.
    Lenchik L, Rogers LF, Delmas PD, Genant HK (2004) Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol 183:949–958PubMedGoogle Scholar
  37. 37.
    Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  38. 38.
    Fleiss J (1981) The measurement of interrater agreement. In: Statistical method for rates and proportions. Wiley, New York, pp 211–236Google Scholar
  39. 39.
    Hospers IC, van der Laan JG, Zeebregts CJ, Nieboer P, Wolffenbuttel BH, Dierckx RA, Kreeftenberg HG, Jager PL, Slart RH (2009) Vertebral fracture assessment in supine position: comparison by using conventional semiquantitative radiography and visual radiography. Radiology 251:822–828PubMedCrossRefGoogle Scholar
  40. 40.
    Zmuda JM, Cauley JA, Glynn NW, Finkelstein JS (2000) Posterior-anterior and lateral dual-energy X-ray absorptiometry for the assessment of vertebral osteoporosis and bone loss among older men. J Bone Miner Res 15:1417–1424PubMedCrossRefGoogle Scholar
  41. 41.
    Olmez N, Kaya T, Gunaydin R, Vidinli BD, Erdogan N, Memis A (2005) Intra- and interobserver variability of Kleerekoper's method in vertebral fracture assessment. Clin Rheumatol 24:215–218PubMedCrossRefGoogle Scholar
  42. 42.
    Kleerekoper MPA, Ellis BI (1984) Measurement of vertebral fracture rates in osteoporosis. In: Christiansen C, Nordin BEC, Parfitt AM, Peck WA, Riggs BL (eds) Copenhagen International Symposium on Osteoporosis. Department of Clinical Chemistry, Glostrup Hospital, Copenhagen, pp 103–109Google Scholar
  43. 43.
    Bauer JS, Muller D, Ambekar A, Dobritz M, Matsuura M, Eckstein F, Rummeny EJ, Link TM (2006) Detection of osteoporotic vertebral fractures using multidetector CT. Osteoporos Int 17:608–615PubMedCrossRefGoogle Scholar
  44. 44.
    Muller D, Bauer JS, Zeile M, Rummeny EJ, Link TM (2008) Significance of sagittal reformations in routine thoracic and abdominal multislice CT studies for detecting osteoporotic fractures and other spine abnormalities. Eur Radiol 18:1696–1702PubMedCrossRefGoogle Scholar
  45. 45.
    Williams AL, Al-Busaidi A, Sparrow PJ, Adams JE, Whitehouse RW (2009) Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur J Radiol 69:179–183PubMedCrossRefGoogle Scholar
  46. 46.
    Woo EK, Mansoubi H, Alyas F (2008) Incidental vertebral fractures on multidetector CT images of the chest: prevalence and recognition. Clin Radiol 63:160–164PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2010

Authors and Affiliations

  • E. J. Samelson
    • 1
    • 2
  • B. A. Christiansen
    • 3
    • 4
    • 5
  • S. Demissie
    • 6
  • K. E. Broe
    • 1
  • Y. Zhou
    • 6
  • C. A. Meng
    • 1
  • W. Yu
    • 7
  • X. Cheng
    • 8
  • C. J. O’Donnell
    • 2
    • 9
  • U. Hoffmann
    • 2
    • 10
  • H. K. Genant
    • 11
  • D. P. Kiel
    • 1
    • 2
  • M. L. Bouxsein
    • 3
    • 4
  1. 1.Hebrew SeniorLifeInstitute for Aging Research BostonBostonUSA
  2. 2.Department of MedicineHarvard Medical SchoolBostonUSA
  3. 3.Beth Israel Deaconess Medical CenterCenter for Advanced Orthopedic StudiesBostonUSA
  4. 4.Department of Orthopedic SurgeryHarvard Medical SchoolBostonUSA
  5. 5.Department of OrthopaedicsUniversity of California DavisSacramentoUSA
  6. 6.Department of BiostatisticsBoston University School of Public HealthBostonUSA
  7. 7.RadiologyPeking Union Medical College HospitalBeijingChina
  8. 8.RadiologyBeijing Ji Shui Tan hospitalBeijingChina
  9. 9.National Heart, Lung, and Blood Institute’s Framingham Heart StudyFraminghamUSA
  10. 10.Department of RadiologyMassachusetts General HospitalBostonUSA
  11. 11.Department of RadiologyUniversity of California San Francisco, and Synarc, Inc.San FranciscoUSA

Personalised recommendations