Skip to main content

Advertisement

Log in

Does using lower limit of normal values enhance the ability of a single bone mineral density measure to predict fractures?

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Using a single bone mineral density (BMD) measure, we demonstrated that the lower limit of normal (LLN) method is more consistent in predicting osteoporosis fractures than the T-score in white menopausal women from the Study of Osteoporosis Fracture (SOF).

Introduction

In order to circumvent the inconsistencies and limitations with using the T-score when defining osteoporosis, we propose using 95% LLN values derived from centered polynomial models using the NHANES III BMD measures. The main aim of this study was to compare the two methods in prediction of fracture and agreement in osteoporosis classification using cohort data.

Methods

We compared the fracture prediction ability of the two methods using a single BMD measurement in 4,948 white women aged 67–74 years in the SOF employing kappa statistics, sensitivity, and specificity.

Results

The T-score provided inconsistent osteoporosis classification (46.6%) across the five hip regions of interest (ROIs) and this was significantly (p < 0.0001) reduced when using the LLN method (36.5%). Kappa statistics of incident fracture during 12 years of follow-up related to the prevalence of osteoporosis at baseline was significantly improved using the LLN method compared to using T-score. Sensitivity and specificity for fracture based on a single BMD measurement of different hip ROIs were more consistent using the LLN method.

Conclusion

The LLN method provides a more consistent and efficient method for osteoporosis fracture prediction than the T-score in 67- to 74-year-old white women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    CAS  PubMed  Google Scholar 

  2. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis Technique report series No. 843. WHO, Geneva

    Google Scholar 

  3. Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific review. JAMA 288:1889–1897

    Article  PubMed  Google Scholar 

  4. Lewiecki ME (2003) Mike’s Manual 6th New Mexico Clinical Research & osteoporosis Center, Inc. Albuquerque, NM, USA

  5. Greenspan SL, Maitland-Ramsey L, Myers E (1996) Classification of osteoporosis in the elderly is dependent on site-specific analysis. Calcif Tissue Int 58:409–414

    Article  CAS  PubMed  Google Scholar 

  6. Faulkner KG, von Stetten E, Miller P (1999) Discordance in patient classification using T-scores. J Clin Densitom 2:343–350

    Article  CAS  PubMed  Google Scholar 

  7. Faulkner KG (1998) Bone densitometry: choosing the proper skeletal site to measure. J Clin Densitom 1:279–285

    Article  CAS  PubMed  Google Scholar 

  8. Pocock NA, Sambrook PN, Nguyen T, Kelly P, Freund J, Eisman JA (1992) Assessment of spinal and femoral bone density by dual X-ray absorptiometry: comparison of lunar and hologic instruments. J Bone Miner Res 7:1081–1084

    Article  CAS  PubMed  Google Scholar 

  9. Faulkner KG, Roberts LA, McClung MR (1996) Discrepancies in normative data between Lunar and Hologic DXA systems. Osteoporos Int 6:432–436

    Article  CAS  PubMed  Google Scholar 

  10. Lofman O, Larsson L, Toss G (2000) Bone Bone mineral density in diagnosis of osteoporosis: reference population, definition of peak bone mass, and measured site determine prevalence. J Clin Densitom 3:177–186

    Article  CAS  PubMed  Google Scholar 

  11. Lewiecki EM, Kendler DL, Kiebzak GM, Schmeer P, Prince RL, El-Hajj Fuleihan G, Hans D (2004) Special report on the official positions of the International Society for Clinical Densitometry. Osteoporos Int 15:779–784

    Article  CAS  PubMed  Google Scholar 

  12. American Statistical Association JSM online program Available at: http://www.amstat.org/meetings/jsm/2007/onlineprogram/index.cfm?fuseaction=abstract_details&abstractid=309589. Accessed January 15, 2009

  13. National Center for Health Statistics (1994) Plan and operation of the Third National Health and Nutrition Examination Survey, 1988-1994 Vital Health Stat 1 (32) DHHS publication no (PHS) 94-1308 NCHS, Hyattsville, Maryland

  14. Kung HC, Hoyert DL, Xu JQ, Murphy SL. (2008) Deaths: final data for 2005. National vital statistics reports; 56 (10) Hyattsville MD: national Center for Health Statistics

  15. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332:767–773

    Article  CAS  PubMed  Google Scholar 

  16. Steiger P, Cummings SR, Black DM, Spencer NE, Genant HK (1992) Age-related decrements in bone mineral density in women over 65. J Bone Miner Res 7:625–632

    Article  CAS  PubMed  Google Scholar 

  17. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC Jr, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  CAS  PubMed  Google Scholar 

  18. Faulkner KG, von Stetten E, Steiger P, Miller P (1998) Discrepancies in osteoporosis prevalence at different skeletal sites: impact on the WHO criteria. Bone 12:S198

    Google Scholar 

  19. Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Glüer CC, Lu Y, Chavez M (1997) Comparisons of non-invasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12:697–711

    Article  CAS  PubMed  Google Scholar 

  20. Davis JW, Ross PD, Wasnich RD (1994) Evidence for both generalized and regional low bone mass among elderly women. J Bone Miner Res 9:305–309

    Article  CAS  PubMed  Google Scholar 

  21. Genant H, Lu Y, Mathur A, Fuerst T, Cummings S (1996) Classification based on DXA measurements for assessing the risk of hip fractures. J Bone Miner Res 11:S120

    Google Scholar 

  22. Genant H, Lu Y, Mathur A, Fuerst T, Zhao S, Cummings S (1997) Diverse diagnostic armamentarium in bone mass measures: opportunities and dilemmas. Osteoporos Int 7:258

    Google Scholar 

  23. Mazess RB, Barden HS (1999) T-scores differ among skeletal sites. Calcif Tissue Int 64:S104

    Google Scholar 

  24. Hanson J (1997) Standardization of femur BMD. J Bone Miner Res 12:1316–1317 (Letter)

    Article  CAS  PubMed  Google Scholar 

  25. Lofman O, Larsson L, Toss G (2001) Bone mineral density instead of T-score? J Clin Densitom 4:75–77

    Article  Google Scholar 

  26. Leib ES, Binkley N, Bilezikian JP, Kendler DL, Lewiecki EM, Petak SM (2006) Position Development Conference of the International Society for Clinical Densitometry. Vancouver, BC July 15-17, 2005. J Rheumatol 33(11):2319–2321

    PubMed  Google Scholar 

  27. Hans D, Downs R, Duboeuf JF, Greenspan S, Jankowski L, Kiebzak G, Petak S (2005) Skeletal sites for osteoporosis diagnosis: The 2005 ISCD official positions. J Clin Densitom 9:15–21

    Article  Google Scholar 

  28. Binkley N, Bilezikian J, Kendler D, Leib E, Lewiecki E, Petak S (2005) Official positions of the international society for clinical densitometry and executive summary of the 2005 position development conference. J Clin Densitom 9:4–14

    Article  Google Scholar 

  29. Lu Y, Genant HK, Shepherd J, Zhao S, Mathur A, Fuerst TP, Cummings SR (2001) Classification of osteoporosis based on bone mineral densities. J Bone Miner Res 16:901–910

    Article  CAS  PubMed  Google Scholar 

  30. Anonymous (1993) Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  31. Hui SL, Slemenda CW, Johnston CC (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81:1804–1809

    Article  CAS  PubMed  Google Scholar 

  32. Kanis J, Borgstrom F, De Laet C et al (2005) Assessment of fracture risk. Osteoporosis Int 16:581–589

    Article  Google Scholar 

Download references

Acknowledgement

The Study of Osteoporotic Fractures (SOF) is supported by National Institutes of Health funding. The National Institute on Aging (NIA) provides support under the following grant numbers: AG05407, AR35582, AG05394, AR35584, AR35583, R01 AG005407, R01 AG027576-22, 2 R01 AG005394-22A1, and 2 R01 AG027574-22A1. We thank Li-Yung Lui at San Francisco Coordinating Center for her assistance with the SOF data. These analyses were done independently of the SOF study, and therefore should not be interpreted as representing the views of the SOF investigator group.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Magnus, J.H., Rice, J.C. et al. Does using lower limit of normal values enhance the ability of a single bone mineral density measure to predict fractures?. Osteoporos Int 21, 1881–1888 (2010). https://doi.org/10.1007/s00198-009-1160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1160-2

Keywords

Navigation