Osteoporosis International

, Volume 21, Issue 8, pp 1351–1360 | Cite as

Fracture, bone mineral density, and the effects of calcitonin receptor gene in postmenopausal Koreans

  • H.-J. Lee
  • S.-Y. Kim
  • G. S. Kim
  • J.-Y. Hwang
  • Y.-J. Kim
  • B. Jeong
  • T.-H. Kim
  • E. K. Park
  • S. H. Lee
  • H.-L. Kim
  • J.-M. Koh
  • J.-Y. Lee
Original Article



In a candidate gene association study, we found that the variations of calcitonin receptor (CALCR) gene were related to the risk of vertebral fracture and increased bone mineral density (BMD).


Calcitonins through calcitonin receptors inhibit osteoclast-mediated bone resorption and modulate calcium ion excretion by the kidney and also prevent vertebral bone loss in early menopause.


To identify genetically susceptible factors of osteoporosis, we discovered the variations in CALCR gene, genotyped in Korean postmenopausal women (n = 729), and examined the potential involvement of seven single-nucleotide polymorphism (SNPs) and their haplotypes in linkage disequilibrium block (BL_hts).


The SNPs, +43147G > C (intron 7), +60644C > T (exon13, 3' untranslated region), and their haplotypes, BL2_ht1 and BL2_ht2, showed a significant association with risk of vertebral fracture (p = 0.048–0.004) and BL2_ht1 showed a highly significant protective effect. Moreover, the polymorphism +60644C > T showed a highly significant association with BMD at both lumbar spine and femoral neck. The subjects carrying CC and CT genotypes with the SNP, +60644C > T, had higher BMD values at the lumbar spine (p = 0.01–0.001) and femoral neck (p = 0.025–0.009).


These results indicate that the CALCR gene may regulate bone metabolism, and +60644C > T in the CALCR gene may genetically modulate bone phenotype.


Bone mineral density CALCR Fracture SNP Postmenopause 


  1. 1.
    Peacock M, Turner CH, Econs MJ, Foroud T (2002) Genetics of osteoporosis. Endocr Rev 23:303–326CrossRefPubMedGoogle Scholar
  2. 2.
    Akhter MP, Lappe JM, Davies KM, Recker RR (2007) Transmenopausal changes in the trabecular bone structure. Bone 41:111–116CrossRefPubMedGoogle Scholar
  3. 3.
    Fogarty P, O'Beirne B, Casey C (2005) Epidemiology of the most frequent diseases in the European a-symptomatic post-menopausal women. Is there any difference between Ireland and the rest of Europe? Maturitas 52 Suppl 1:S3-S6Google Scholar
  4. 4.
    Palacios S, Borrego RS, Forteza A (2005) The importance of preventive health care in post-menopausal women. Maturitas 52(Suppl 1):S53–S60 ReviewCrossRefPubMedGoogle Scholar
  5. 5.
    North American Menopause Society (2002) Management of postmenopausal osteoporosis: position statement of the North American Menopause Society. Menopause 9:84–101Google Scholar
  6. 6.
    Recker R, Lappe J, Davies K, Heaney R (2000) Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res 15:1965–1973CrossRefPubMedGoogle Scholar
  7. 7.
    Abrahamsen B, Nissen N, Hermann AP, Hansen B, Barenholdt O, Vestergaard P, Tofteng CL, Pors Nielsen S (2002) When should densitometry be repeated in healthy peri- and postmenopausal women?: the Danish Osteoporosis Prevention Study. J Bone Miner Res 17:2061–2067CrossRefPubMedGoogle Scholar
  8. 8.
    Gallagher JC (2007) Effect of early menopause on bone mineral density and fractures. Menopause 14:567–571CrossRefPubMedGoogle Scholar
  9. 9.
    Audi L, Garcia-Ramirez M, Carrascosa A (1999) Genetic determinants of bone mass. Horm Res 51:105–523CrossRefPubMedGoogle Scholar
  10. 10.
    Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC Jr (1991) Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6:561–567CrossRefPubMedGoogle Scholar
  11. 11.
    Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141CrossRefPubMedGoogle Scholar
  12. 12.
    Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048CrossRefPubMedGoogle Scholar
  13. 13.
    Weeks DE, Lathrop GM (1995) Polygenic disease: methods for mapping complex disease traits. Trends Genet 11:513–519CrossRefPubMedGoogle Scholar
  14. 14.
    Arden NK, Spector TD (1997) Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 12:2076–2081CrossRefPubMedGoogle Scholar
  15. 15.
    Eisman JA (1999) Genetics of osteoporosis. Endocr Rev 20:788–804CrossRefPubMedGoogle Scholar
  16. 16.
    Stewart TL, Ralston SH (2000) Role of genetic factors in the pathogenesis of osteoporosis. J Endocrinol 166:235–245CrossRefPubMedGoogle Scholar
  17. 17.
    Pondel M (2000) Calcitonin and calcitonin receptors: bone and beyond. Int J Exp Pathol 81:405–422CrossRefPubMedGoogle Scholar
  18. 18.
    Purdue BW, Tilakaratne N, Sexton PM (2002) Molecular pharmacology of the calcitonin receptor. Receptors Channels 8:243–255 ReviewCrossRefPubMedGoogle Scholar
  19. 19.
    Pham V, Dong M, Wade JD, Miller LJ, Morton CJ, Ng HL, Parker MW, Sexton PM (2005) Insights into interactions between the alpha-helical region of the salmon calcitonin antagonists and the human calcitonin receptor using photoaffinity labeling. J Biol Chem 280:28610–28622CrossRefPubMedGoogle Scholar
  20. 20.
    Delaney MF (2006) Strategies for the prevention and treatment of osteoporosis during early postmenopause. Am J Obstet Gynecol 194:S12–S23 ReviewCrossRefPubMedGoogle Scholar
  21. 21.
    Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhin S, Galson DL, Zajac JD, Karsenty G (2004) Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 164:509–514CrossRefPubMedGoogle Scholar
  22. 22.
    Davey RA, Turner AG, McManus JF, Chiu WS, Tjahyono F, Moore AJ, Atkins GJ, Anderson PH, Ma C, Glatt V, MacLean HE, Vincent C, Bouxsein M, Morris HA, Findlay DM, Zajac JD (2008) Calcitonin receptor plays a physiological role to protect against hypercalcemia in mice. J Bone Miner Res 23:1182–1193CrossRefPubMedGoogle Scholar
  23. 23.
    Masi L, Becherini L, Colli E, Gennari L, Mansani R, Falchetti A, Becorpi AM, Cepollaro C, Gonnelli S, Tanini A, Brandi ML (1998) Polymorphisms of the calcitonin receptor gene are associated with bone mineral density in postmenopausal Italian women. Genetics of osteoporosis. Biochem Biophys Res Commun 248:190–195CrossRefPubMedGoogle Scholar
  24. 24.
    Taboulet J, Frenkian M, Frendo JL, Feingold N, Jullienne A, de Vernejoul MC (1998) Calcitonin receptor polymorphism is associated with a decreased fracture risk in post-menopausal women. Hum Mol Genet 7:2129–2133CrossRefPubMedGoogle Scholar
  25. 25.
    Bandres E, Pombo I, Gonzalez-Huarriz M, Rebollo A, Lopez G, Garcia-Foncillas J (2005) Association between bone mineral density and polymorphisms of the VDR, ERalpha, COL1A1 and CTR genes in Spanish postmenopausal women. J Endocrinol Invest 28:312–321PubMedGoogle Scholar
  26. 26.
    Nakamura M, Zhang ZQ, Shan L, Hisa T, Sasaki M, Tsukino R, Yokoi T, Kaname A, Kakudo K (1997) Allelic variants of human calcitonin receptor in the Japanese population. Hum Genet 99:38–41CrossRefPubMedGoogle Scholar
  27. 27.
    Nakamura M, Morimoto T, Zhang Z, Utsunomiya H, Inagami T, Ogihara T, Kakudo K (2001) Calcitonin receptor gene polymorphism in japanese women: correlation with body mass and bone mineral density. Calcif Tissue Int 68:211–215CrossRefPubMedGoogle Scholar
  28. 28.
    Jo JM, Kim JS, Kim GS, Kim SW, Shin JW, Moon DH, Lee HK (1999) Cross-calibration of bone mineral density between two different dual X-ray absorptiometry systems: hologic QDR 4500-A and lunar EXPERT-XL. Kor J Nucl Med 33:282–288Google Scholar
  29. 29.
    Kiel D (1995) Assessing vertebral fractures. National Osteoporosis Foundation Working Group on Vertebral Fractures. J Bone Miner Res 10:518–523CrossRefPubMedGoogle Scholar
  30. 30.
    Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  31. 31.
    Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202PubMedGoogle Scholar
  32. 32.
    Nickerson DA, Tobe VO, Taylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25:2745–2751CrossRefPubMedGoogle Scholar
  33. 33.
    Oliphant A, Barker DL, Stuelpnagel JR, Chee MS (2002) BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques Suppl 56-8:60–61Google Scholar
  34. 34.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMedGoogle Scholar
  35. 35.
    Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefPubMedGoogle Scholar
  36. 36.
    Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434CrossRefPubMedGoogle Scholar
  37. 37.
    Zofková I, Zajícková K, Hill M, Krepelová A (2003) Does polymorphism C1377T of the calcitonin receptor gene determine bone mineral density in postmenopausal women? Exp Clin Endocrinol Diabetes 111:447–449CrossRefPubMedGoogle Scholar
  38. 38.
    Wolfe LA 3rd, Fling ME, Xue Z, Armour S, Kerner SA, Way J, Rimele T, Cox RF (2003) In vitro characterization of a human calcitonin receptor gene polymorphism. Mutat Res 522:93–105PubMedGoogle Scholar
  39. 39.
    Castellani C, Malerba G, Sangalli A, Delmarco A, Petrelli E, Rossini M, Assael BM, Mottes M (2006) The genetic background of osteoporosis in cystic fibrosis: association analysis with polymorphic markers in four candidate genes. J Cyst Fibros 5:229–235CrossRefPubMedGoogle Scholar
  40. 40.
    Suzuki A, Ji G, Numabe Y, Ishii K, Muramatsu M, Kamoi K (2004) Large-scale investigation of genomic markers for severe periodontitis. Odontology 92:43–47CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • H.-J. Lee
    • 1
    • 2
  • S.-Y. Kim
    • 3
    • 4
  • G. S. Kim
    • 3
    • 5
  • J.-Y. Hwang
    • 1
  • Y.-J. Kim
    • 1
  • B. Jeong
    • 1
  • T.-H. Kim
    • 3
    • 6
  • E. K. Park
    • 3
    • 6
  • S. H. Lee
    • 3
    • 5
  • H.-L. Kim
    • 1
  • J.-M. Koh
    • 3
    • 5
  • J.-Y. Lee
    • 1
    • 7
  1. 1.The Center for Genome ScienceNational Institute of HealthSeoulRepublic of Korea
  2. 2.The Center for Biomedical SciencesNational Institute of HealthSeoulRepublic of Korea
  3. 3.Skeletal Diseases Genome Research CenterKyungpook National University HospitalJung-guRepublic of Korea
  4. 4.Department of Orthopedic SurgeryKyungpook National University School of MedicineJung-guRepublic of Korea
  5. 5.Division of Endocrinology and MetabolismUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
  6. 6.Department of Pathology and Regenerative Medicine, School of DentistryKyungpook National University188-1, Samduk 2-gaJung-guRepublic of Korea
  7. 7.Eunpyung-GuRepublic of Korea

Personalised recommendations